graph building works

This commit is contained in:
Trammell Hudson 2014-12-14 11:49:55 -05:00
parent a304573a45
commit 2881e65d18

188
unfold.c
View File

@ -1,3 +1,7 @@
/** \file
* Unfold an STL file into a set of laser-cutable polygons.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
@ -27,13 +31,16 @@ typedef struct
stl_face_t;
#define MAX_POINTS 24
typedef struct face face_t;
typedef struct
struct face
{
int n;
int p[MAX_POINTS];
} poly_t;
float sides[3];
face_t * next[3];
int next_edge[3];
int coplanar[3];
int used;
};
static int
@ -85,6 +92,33 @@ edge_eq(
}
/* Compare two edges in two triangles.
*
* note that if the windings are all the same, the edges will
* compare in the opposite order (for example, the edge from 0 to 1
* compares to the edge from 2 to 1 in the other triangle).
*/
static int
edge_eq2(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v00 = &t0->p[e0];
const v3_t * const v01 = &t0->p[(e0+1) % 3];
const v3_t * const v10 = &t1->p[e1];
const v3_t * const v11 = &t1->p[(e1+1) % 3];
if (v3_eq(v00, v11) && v3_eq(v01, v10))
return 1;
return 0;
}
double
v3_len(
const v3_t * const v0,
@ -98,30 +132,6 @@ v3_len(
return sqrt(dx*dx + dy*dy + dz*dz);
}
typedef struct
{
float v[2][2];
v3_t p[2];
} rotate_t;
typedef {
float p[3][2];
} project_t;
void
project(
const stl_face_t * const t,
const rotate_t * const r,
project * const p
)
{
double d0 = v3_len(&t->p[0], &t->p[1]);
double d1 = v3_len(&t->p[1], &t->p[2]);
double d2 = v3_len(&t->p[1], &t->p[2]);
}
/** recursively try to fix up the triangles.
*
@ -129,47 +139,29 @@ project(
*/
int
recurse(
const stl_face_t * const faces,
int start,
const int num_faces,
int * const used,
rotate_t * r
face_t * const f,
int start_edge
)
{
static int depth;
depth++;
const stl_face_t * const t = &faces[start];
// flag that we are looking into this one
used[start] = 1;
f->used = 1;
// start with the first triangle, find the ones that connect
project(t, r);
// print out a svg group for this triangle, starting with
// the incoming edge
printf("%p %d %f %f %f\n", f, start_edge, f->sides[0], f->sides[1], f->sides[2]);
// for each edge, find the triangle that matches
for (int j = 0 ; j < num_faces ; j++)
for (int edge = 0 ; edge < 3 ; edge++)
{
if (used[j])
face_t * const f2 = f->next[edge];
if (f2->used)
continue;
const stl_face_t * const t2 = &faces[j];
if (edge_eq(t, t2, 0, 1))
{
fprintf(stderr, "%d.0 -> %d\n", start, j);
recurse(faces, j, num_faces, used);
}
if (edge_eq(t, t2, 0, 2))
{
fprintf(stderr, "%d.1 -> %d\n", start, j);
recurse(faces, j, num_faces, used);
}
if (edge_eq(t, t2, 1, 2))
{
fprintf(stderr, "%d.2 -> %d\n", start, j);
recurse(faces, j, num_faces, used);
}
recurse(f2, f->next_edge[edge]);
}
// no success
@ -177,6 +169,17 @@ recurse(
}
int
coplanar_check(
const stl_face_t * const f1,
const stl_face_t * const f2
)
{
// no, for now
return 0;
}
int main(void)
{
@ -188,22 +191,75 @@ int main(void)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const faces = (const void*)(hdr+1);
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
int * const used = calloc(num_triangles, sizeof(*used));
face_t * const faces = calloc(num_triangles, sizeof(*faces));
rotate_t r = {
.x = 0,
.y = 0,
.p0 = faces[0].p[0],
.p1 = faces[0].p[1]
};
// convert the stl triangles into faces
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
recurse(faces, 0, num_triangles, used, &r);
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
}
// look to see if there is a matching point
// in the faces that we've already built
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
for (int j = 0 ; j < num_triangles ; j++)
{
if (i == j)
continue;
const stl_face_t * const stl2 = &stl_faces[j];
face_t * const f2 = &faces[j];
for (int edge = 0 ; edge < 3 ; edge++)
{
if (f->next[edge])
continue;
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
{
if (f2->next[edge2])
continue;
if (!edge_eq2(stl, stl2, edge, edge2))
continue;
f->next[edge] = f2;
f->next_edge[edge] = edge2;
f2->next[edge2] = f;
f2->next_edge[edge2] = edge;
f->coplanar[edge] =
f2->coplanar[edge2] = coplanar_check(stl, stl2);
}
}
}
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
fprintf(stderr, "%d: missing edges?\n", i);
}
// we now have a graph that shows the connection between
// all of the faces and their sizes. start converting them
//for (int i = 0 ; i < num_triangles ; i++)
recurse(&faces[0], 0);
#if 0
// worst case -- all separate polygons