papercraft/unfold.c
2014-12-14 11:49:55 -05:00

317 lines
6.0 KiB
C

/** \file
* Unfold an STL file into a set of laser-cutable polygons.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <math.h>
#define EPS 0.0001
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
float p[3];
} v3_t;
typedef struct
{
v3_t normal;
v3_t p[3];
uint16_t attr;
} __attribute__((__packed__))
stl_face_t;
typedef struct face face_t;
struct face
{
float sides[3];
face_t * next[3];
int next_edge[3];
int coplanar[3];
int used;
};
static int
v3_eq(
const v3_t * v1,
const v3_t * v2
)
{
float dx = v1->p[0] - v2->p[0];
float dy = v1->p[1] - v2->p[1];
float dz = v1->p[2] - v2->p[2];
if (-EPS < dx && dx < EPS
&& -EPS < dy && dy < EPS
&& -EPS < dz && dz < EPS)
return 1;
return 0;
}
static int
edge_eq(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v0 = &t0->p[e0];
const v3_t * const v1 = &t0->p[e1];
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[1]))
return 1;
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[0]))
return 1;
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[2]))
return 1;
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[0]))
return 1;
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[2]))
return 1;
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[1]))
return 1;
return 0;
}
/* Compare two edges in two triangles.
*
* note that if the windings are all the same, the edges will
* compare in the opposite order (for example, the edge from 0 to 1
* compares to the edge from 2 to 1 in the other triangle).
*/
static int
edge_eq2(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v00 = &t0->p[e0];
const v3_t * const v01 = &t0->p[(e0+1) % 3];
const v3_t * const v10 = &t1->p[e1];
const v3_t * const v11 = &t1->p[(e1+1) % 3];
if (v3_eq(v00, v11) && v3_eq(v01, v10))
return 1;
return 0;
}
double
v3_len(
const v3_t * const v0,
const v3_t * const v1
)
{
float dx = v0->p[0] - v1->p[0];
float dy = v0->p[1] - v1->p[1];
float dz = v0->p[2] - v1->p[2];
return sqrt(dx*dx + dy*dy + dz*dz);
}
/** recursively try to fix up the triangles.
*
* returns 0 if this should be unwound, 1 if was successful
*/
int
recurse(
face_t * const f,
int start_edge
)
{
static int depth;
depth++;
// flag that we are looking into this one
f->used = 1;
// print out a svg group for this triangle, starting with
// the incoming edge
printf("%p %d %f %f %f\n", f, start_edge, f->sides[0], f->sides[1], f->sides[2]);
// for each edge, find the triangle that matches
for (int edge = 0 ; edge < 3 ; edge++)
{
face_t * const f2 = f->next[edge];
if (f2->used)
continue;
recurse(f2, f->next_edge[edge]);
}
// no success
return 0;
}
int
coplanar_check(
const stl_face_t * const f1,
const stl_face_t * const f2
)
{
// no, for now
return 0;
}
int main(void)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
face_t * const faces = calloc(num_triangles, sizeof(*faces));
// convert the stl triangles into faces
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
}
// look to see if there is a matching point
// in the faces that we've already built
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
for (int j = 0 ; j < num_triangles ; j++)
{
if (i == j)
continue;
const stl_face_t * const stl2 = &stl_faces[j];
face_t * const f2 = &faces[j];
for (int edge = 0 ; edge < 3 ; edge++)
{
if (f->next[edge])
continue;
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
{
if (f2->next[edge2])
continue;
if (!edge_eq2(stl, stl2, edge, edge2))
continue;
f->next[edge] = f2;
f->next_edge[edge] = edge2;
f2->next[edge2] = f;
f2->next_edge[edge2] = edge;
f->coplanar[edge] =
f2->coplanar[edge2] = coplanar_check(stl, stl2);
}
}
}
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
fprintf(stderr, "%d: missing edges?\n", i);
}
// we now have a graph that shows the connection between
// all of the faces and their sizes. start converting them
//for (int i = 0 ; i < num_triangles ; i++)
recurse(&faces[0], 0);
#if 0
// worst case -- all separate polygons
poly_t * const polys = calloc(num_triangles, sizeof(*polys));
v3_t * const vertices = calloc(num_triangles*3, sizeof(*vertices));
int num_vertices = 0;
for(int i = 0 ; i < num_triangles ; i++)
{
// see if this matches an existing vertex
const stl_face_t * const t = &faces[i];
poly_t * const p = &polys[i];
p->n = 3;
p->p[0] = p->p[1] = p->p[2] = -1;
for (int j = 0 ; j < num_vertices ; j++)
{
const v3_t * const v = &vertices[j];
if (p->p[0] == -1 && v3_eq(v, &t->p0))
p->p[1] = j;
if (p->p[1] == -1 && v3_eq(v, &t->p1))
p->p[1] = j;
if (p->p[2] == -1 && v3_eq(v, &t->p2))
p->p[2] = j;
// check if we've found all of them
if (p->p[0] >= 0 && p->p[1] >= 0 && p->p[2] >= 0)
break;
}
// create new points if we haven't found matches
if (p->p[0] < 0)
{
p->p[0] = num_vertices;
vertices[num_vertices++] = t->p0;
}
if (p->p[1] < 0)
{
p->p[1] = num_vertices;
vertices[num_vertices++] = t->p1;
}
if (p->p[3] < 0)
{
p->p[3] = num_vertices;
vertices[num_vertices++] = t->p2;
}
}
fprintf(stderr, "unique vertices: %d\n", num_vertices);
#endif
return 0;
}