graph building works
This commit is contained in:
parent
a304573a45
commit
2881e65d18
188
unfold.c
188
unfold.c
@ -1,3 +1,7 @@
|
||||
/** \file
|
||||
* Unfold an STL file into a set of laser-cutable polygons.
|
||||
*
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
@ -27,13 +31,16 @@ typedef struct
|
||||
stl_face_t;
|
||||
|
||||
|
||||
#define MAX_POINTS 24
|
||||
typedef struct face face_t;
|
||||
|
||||
typedef struct
|
||||
struct face
|
||||
{
|
||||
int n;
|
||||
int p[MAX_POINTS];
|
||||
} poly_t;
|
||||
float sides[3];
|
||||
face_t * next[3];
|
||||
int next_edge[3];
|
||||
int coplanar[3];
|
||||
int used;
|
||||
};
|
||||
|
||||
|
||||
static int
|
||||
@ -85,6 +92,33 @@ edge_eq(
|
||||
}
|
||||
|
||||
|
||||
/* Compare two edges in two triangles.
|
||||
*
|
||||
* note that if the windings are all the same, the edges will
|
||||
* compare in the opposite order (for example, the edge from 0 to 1
|
||||
* compares to the edge from 2 to 1 in the other triangle).
|
||||
*/
|
||||
static int
|
||||
edge_eq2(
|
||||
const stl_face_t * const t0,
|
||||
const stl_face_t * const t1,
|
||||
int e0,
|
||||
int e1
|
||||
)
|
||||
{
|
||||
const v3_t * const v00 = &t0->p[e0];
|
||||
const v3_t * const v01 = &t0->p[(e0+1) % 3];
|
||||
|
||||
const v3_t * const v10 = &t1->p[e1];
|
||||
const v3_t * const v11 = &t1->p[(e1+1) % 3];
|
||||
|
||||
if (v3_eq(v00, v11) && v3_eq(v01, v10))
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
double
|
||||
v3_len(
|
||||
const v3_t * const v0,
|
||||
@ -98,30 +132,6 @@ v3_len(
|
||||
return sqrt(dx*dx + dy*dy + dz*dz);
|
||||
}
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float v[2][2];
|
||||
v3_t p[2];
|
||||
} rotate_t;
|
||||
|
||||
|
||||
typedef {
|
||||
float p[3][2];
|
||||
} project_t;
|
||||
|
||||
void
|
||||
project(
|
||||
const stl_face_t * const t,
|
||||
const rotate_t * const r,
|
||||
project * const p
|
||||
)
|
||||
{
|
||||
double d0 = v3_len(&t->p[0], &t->p[1]);
|
||||
double d1 = v3_len(&t->p[1], &t->p[2]);
|
||||
double d2 = v3_len(&t->p[1], &t->p[2]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** recursively try to fix up the triangles.
|
||||
*
|
||||
@ -129,47 +139,29 @@ project(
|
||||
*/
|
||||
int
|
||||
recurse(
|
||||
const stl_face_t * const faces,
|
||||
int start,
|
||||
const int num_faces,
|
||||
int * const used,
|
||||
rotate_t * r
|
||||
face_t * const f,
|
||||
int start_edge
|
||||
)
|
||||
{
|
||||
static int depth;
|
||||
|
||||
depth++;
|
||||
|
||||
const stl_face_t * const t = &faces[start];
|
||||
|
||||
// flag that we are looking into this one
|
||||
used[start] = 1;
|
||||
f->used = 1;
|
||||
|
||||
// start with the first triangle, find the ones that connect
|
||||
project(t, r);
|
||||
// print out a svg group for this triangle, starting with
|
||||
// the incoming edge
|
||||
printf("%p %d %f %f %f\n", f, start_edge, f->sides[0], f->sides[1], f->sides[2]);
|
||||
|
||||
// for each edge, find the triangle that matches
|
||||
for (int j = 0 ; j < num_faces ; j++)
|
||||
for (int edge = 0 ; edge < 3 ; edge++)
|
||||
{
|
||||
if (used[j])
|
||||
face_t * const f2 = f->next[edge];
|
||||
if (f2->used)
|
||||
continue;
|
||||
|
||||
const stl_face_t * const t2 = &faces[j];
|
||||
if (edge_eq(t, t2, 0, 1))
|
||||
{
|
||||
fprintf(stderr, "%d.0 -> %d\n", start, j);
|
||||
recurse(faces, j, num_faces, used);
|
||||
}
|
||||
if (edge_eq(t, t2, 0, 2))
|
||||
{
|
||||
fprintf(stderr, "%d.1 -> %d\n", start, j);
|
||||
recurse(faces, j, num_faces, used);
|
||||
}
|
||||
if (edge_eq(t, t2, 1, 2))
|
||||
{
|
||||
fprintf(stderr, "%d.2 -> %d\n", start, j);
|
||||
recurse(faces, j, num_faces, used);
|
||||
}
|
||||
recurse(f2, f->next_edge[edge]);
|
||||
}
|
||||
|
||||
// no success
|
||||
@ -177,6 +169,17 @@ recurse(
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
coplanar_check(
|
||||
const stl_face_t * const f1,
|
||||
const stl_face_t * const f2
|
||||
)
|
||||
{
|
||||
// no, for now
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
@ -188,22 +191,75 @@ int main(void)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
const stl_header_t * const hdr = (const void*) buf;
|
||||
const stl_face_t * const faces = (const void*)(hdr+1);
|
||||
const stl_face_t * const stl_faces = (const void*)(hdr+1);
|
||||
const int num_triangles = hdr->num_triangles;
|
||||
|
||||
fprintf(stderr, "header: '%s'\n", hdr->header);
|
||||
fprintf(stderr, "num: %d\n", num_triangles);
|
||||
|
||||
int * const used = calloc(num_triangles, sizeof(*used));
|
||||
face_t * const faces = calloc(num_triangles, sizeof(*faces));
|
||||
|
||||
rotate_t r = {
|
||||
.x = 0,
|
||||
.y = 0,
|
||||
.p0 = faces[0].p[0],
|
||||
.p1 = faces[0].p[1]
|
||||
};
|
||||
// convert the stl triangles into faces
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
{
|
||||
const stl_face_t * const stl = &stl_faces[i];
|
||||
face_t * const f = &faces[i];
|
||||
|
||||
recurse(faces, 0, num_triangles, used, &r);
|
||||
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
|
||||
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
|
||||
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
|
||||
}
|
||||
|
||||
// look to see if there is a matching point
|
||||
// in the faces that we've already built
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
{
|
||||
const stl_face_t * const stl = &stl_faces[i];
|
||||
face_t * const f = &faces[i];
|
||||
|
||||
for (int j = 0 ; j < num_triangles ; j++)
|
||||
{
|
||||
if (i == j)
|
||||
continue;
|
||||
|
||||
const stl_face_t * const stl2 = &stl_faces[j];
|
||||
face_t * const f2 = &faces[j];
|
||||
|
||||
for (int edge = 0 ; edge < 3 ; edge++)
|
||||
{
|
||||
if (f->next[edge])
|
||||
continue;
|
||||
|
||||
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
|
||||
{
|
||||
if (f2->next[edge2])
|
||||
continue;
|
||||
|
||||
if (!edge_eq2(stl, stl2, edge, edge2))
|
||||
continue;
|
||||
|
||||
f->next[edge] = f2;
|
||||
f->next_edge[edge] = edge2;
|
||||
f2->next[edge2] = f;
|
||||
f2->next_edge[edge2] = edge;
|
||||
|
||||
f->coplanar[edge] =
|
||||
f2->coplanar[edge2] = coplanar_check(stl, stl2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// all three edges should be matched
|
||||
if (f->next[0] && f->next[1] && f->next[2])
|
||||
continue;
|
||||
fprintf(stderr, "%d: missing edges?\n", i);
|
||||
}
|
||||
|
||||
// we now have a graph that shows the connection between
|
||||
// all of the faces and their sizes. start converting them
|
||||
|
||||
//for (int i = 0 ; i < num_triangles ; i++)
|
||||
recurse(&faces[0], 0);
|
||||
|
||||
#if 0
|
||||
// worst case -- all separate polygons
|
||||
|
Loading…
Reference in New Issue
Block a user