lots of hacks, but it is starting to work

This commit is contained in:
Trammell hudson 2017-10-01 14:52:43 -04:00
parent d321a1e86d
commit ae46476d09
Failed to extract signature

View File

@ -49,12 +49,9 @@ struct _tri_t
};
// line segment has to track its source so that it knows which to not
// compare against in its occlusion checks.
typedef struct _seg_t seg_t;
struct _seg_t {
v3_t p[2];
v3_t src[2];
seg_t * next;
};
@ -242,15 +239,16 @@ static float poly_min[2], poly_max[2];
static inline int
v2_eq(
const float p0[],
const float p1[]
const float p1[],
const float eps
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
// are the points within epsilon of each other?
if (-EPS < dx && dx < EPS
&& -EPS < dy && dy < EPS)
if (-eps < dx && dx < eps
&& -eps < dy && dy < eps)
return 1;
// nope, not equal
@ -299,7 +297,7 @@ get_line_intersection(
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
{
if(0) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
if(1) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
p0_x, p0_y,
p1_x, p1_y,
p2_x, p2_y,
@ -320,30 +318,96 @@ get_line_intersection(
}
int
intersect(
const v3_t * const p00,
const v3_t * const p01,
const v3_t * const p10,
const v3_t * const p11,
float *px,
float *py
/** Compute the points of intersection for two segments in 2d, and z points.
*
* This is a specialized ray intersection algorithm for the
* hidden wire-frame removal code that computes the intersection
* points for two rays (in 2D, "orthographic") and then computes
* the Z depth for the intersections along each of the segments.
*
* Returns -1 for non-intersecting, otherwise a ratio of how far
* along the intersection is on the l0.
*/
float
hidden_intersect(
const v3_t * const p0,
const v3_t * const p1,
const v3_t * const p2,
const v3_t * const p3,
v3_t * const l0_int,
v3_t * const l1_int
)
{
// special case; if this is the same line, it does not intersect
if (v2_eq(p00->p, p10->p) && v2_eq(p01->p, p11->p))
return 0;
if (v2_eq(p01->p, p10->p) && v2_eq(p00->p, p11->p))
return 0;
const float p0_x = p0->p[0];
const float p0_y = p0->p[1];
const float p0_z = p0->p[2];
const float p1_x = p1->p[0];
const float p1_y = p1->p[1];
const float p1_z = p1->p[2];
const float p2_x = p2->p[0];
const float p2_y = p2->p[1];
const float p2_z = p2->p[2];
const float p3_x = p3->p[0];
const float p3_y = p3->p[1];
const float p3_z = p3->p[2];
return get_line_intersection(
p00->p[0], p00->p[1],
p01->p[0], p01->p[1],
p10->p[0], p10->p[1],
p11->p[0], p11->p[1],
px,
py
const float s1_x = p1_x - p0_x;
const float s1_y = p1_y - p0_y;
const float s2_x = p3_x - p2_x;
const float s2_y = p3_y - p2_y;
// compute r x s
const float d = -s2_x * s1_y + s1_x * s2_y;
// if they are close to parallel, then we do not need to check
// for intersection (we define that as "non-intersecting")
if (-EPS < d && d < EPS)
return -1;
// Compute how far along each line they would interesect
const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
// if they are not within the ratio (0,1), then the intersecton occurs
// outside of the segments and is not of concern
if (r0 < 0 || r0 > 1)
return -1;
if (r1 < 0 || r1 > 1)
return -1;
// Collision detected with the segments
if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n",
p0_x, p0_y, p0_z,
p1_x, p1_y, p1_z,
p2_x, p2_y, p2_z,
p3_x, p3_y, p2_z,
r0,
r1
);
const float ix = p0_x + (r0 * s1_x);
const float iy = p0_y + (r0 * s1_y);
// compute the z intercept for each on the two different coordinates
if(l0_int)
{
*l0_int = (v3_t){{
ix,
iy,
p0_z + r0 * (p1_z - p0_z)
}};
}
if(l1_int)
{
*l1_int = (v3_t){{
ix,
iy,
p2_z + r1 * (p3_z - p2_z)
}};
}
return r0;
}
@ -924,14 +988,79 @@ seg_new(
return NULL;
s->p[0] = p0;
s->p[1] = p1;
s->src[0] = p0;
s->src[1] = p1;
s->next = NULL;
return s;
}
void
seg_print(
const seg_t * const s
)
{
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[1].p[0],
s->p[1].p[1]
);
}
void
tri_print(
const tri_t * const t
)
{
fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f\n",
t->p[0].p[0],
t->p[0].p[1],
t->p[0].p[2],
t->p[1].p[0],
t->p[1].p[1],
t->p[1].p[2],
t->p[2].p[0],
t->p[2].p[1],
t->p[2].p[2]
);
}
/** Find the Z point of a given xy point along the segment from p0 to p1.
*
* Returns -1 if there is no known Z point.
*/
float
find_z(
const v3_t * const p0,
const v3_t * const p1,
const float x,
const float y
)
{
const float dx = p1->p[0] - p0->p[0];
const float dy = p1->p[1] - p0->p[1];
const float dz = p1->p[2] - p0->p[2];
// find the z value of the intersection point
// on the segment. we don't care about the triangle
float ratio = 0;
if (dx != 0)
{
ratio = (x - p0->p[0]) / dx;
} else
if (dy != 0)
{
ratio = (y - p0->p[1]) / dy;
} else {
fprintf(stderr, "uh, dx and dy both zero?\n");
return -1;
}
return p0->p[2] + dz * ratio;
}
/*
int
tri_line_intersect(
@ -967,22 +1096,41 @@ tri_seg_intersect(
seg_t ** slist_visible
)
{
const float p0x = s->p[0].p[0];
const float p0y = s->p[0].p[1];
const float p0z = s->p[0].p[2];
const float p1x = s->p[1].p[0];
const float p1y = s->p[1].p[1];
const float p1z = s->p[1].p[2];
const float seg_max_z = max(p0z, p1z);
for( const tri_t * t = zlist ; t ; t = t->next )
{
// if the segment is closer than the triangle,
// then we no longer have to check any further into
// the zlist (it is sorted by depth).
if (p0z < t->min[2] && p1z < t->min[2])
if (seg_max_z <= t->min[2])
break;
#if 0
// make sure that we're not comparing to our own triangle
// or one that shares an edge with us (which might be in
// a different order)
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
continue;
// do a quick test of does this segment even comes
// close to this triangle
if (p0x < t->min[0] && p1x < t->min[0]
@ -1012,28 +1160,50 @@ tri_seg_intersect(
// if both are inside we discard this segment
if (inside0 && inside1)
{
//svg_line("#0000FF", s->p[0].p, s->p[1].p, 0);
//svg_line("#00FF00", t->p[0].p, t->p[1].p, 0);
//svg_line("#00FF00", t->p[1].p, t->p[2].p, 0);
//svg_line("#00FF00", t->p[2].p, t->p[0].p, 0);
fprintf(stderr, "BOTH INSIDE\n");
tri_print(t);
seg_print(s);
return;
}
// split the segment for each intersection with the
// triangle segments and add it to the work queue.
int intersections = 0;
v3_t ix[3] = {};
const float max_z = max(s->p[0].p[2], s->p[1].p[2]);
v3_t is[3] = {}; // 3d point of segment intercept
v3_t it[3] = {}; // 3d point of triangle intercept
for(int j = 0 ; j < 3 ; j++)
{
ix[j].p[2] = max_z;
int rc = intersect(
float ratio = hidden_intersect(
&s->p[0], &s->p[1],
&t->p[j], &t->p[(j+1)%3],
&ix[intersections].p[0], &ix[intersections].p[1]
&is[intersections],
&it[intersections]
);
if (!rc)
if (ratio < 0)
continue;
// deal with corner cases where the segment
// exactly lines up with the triangle edge
// we do not treat this as an intersection
if (-EPS < ratio && ratio < EPS)
{
inside0 = 0;
} else
if (1-EPS < ratio && ratio < 1+EPS)
{
inside1 = 0;
} else {
// this is a real intersection
intersections++;
}
}
// if none of them intersect, we keep looking
if (intersections == 0)
@ -1051,31 +1221,46 @@ fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
if (inside0 || inside1)
{
fprintf(stderr, "uh, inside but two intersections?\n");
return;
//return;
}
// if the segment intersection is closer than the triangle,
// then we do nothing. degenerate cases are not handled
if (is[0].p[2] <= it[0].p[2]
|| is[1].p[2] <= it[1].p[2])
{
fprintf(stderr, "ignoring collision since z %f < %f || %f < %f\n",
is[0].p[2], it[0].p[2],
is[1].p[2], it[1].p[2]);
continue;
}
// segment is behind the triangle,
// we have to create a new segment
// and shorten the existing segment
// find the two intersections that we have
// update the src field
fprintf(stderr, "two intersections\n");
const float d0 = v2_dist(s->p[0].p, ix[0].p);
const float d1 = v2_dist(s->p[1].p, ix[0].p);
const float d0 = v3_len(&s->p[0], &is[0]);
const float d1 = v3_len(&s->p[0], &is[1]);
fprintf(stderr, "two intersections %.0f %.0f\n", d0, d1);
seg_t * news;
if (d0 < d1)
{
// split from p0 to ix0
news = seg_new(s->p[0], ix[0]);
news->src[1] = s->p[1];
s->p[1] = ix[1];
news = seg_new(s->p[0], is[0]);
s->p[0] = is[1];
} else {
// split from p0 to ix1
news = seg_new(s->p[0], ix[1]);
news->src[1] = s->p[1];
s->p[1] = ix[0];
news = seg_new(s->p[0], is[1]);
s->p[0] = is[0];
}
fprintf(stderr, "old segment:" );
seg_print(s);
fprintf(stderr, "new segment:" );
seg_print(news);
// recursively start splitting the new segment
// starting at our current z-depth
@ -1087,36 +1272,47 @@ fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
if (intersections == 1)
{
fprintf(stderr, "split %d %d\n", inside0, inside1);
// if there is an intersection, but the segment intercept
// is close than the triangle intercept, then no problem.
// we do not bother with degenerate cases of intersecting
// triangles
if (is[0].p[2] <= it[0].p[2])
continue;
// segment is behind the triangle, so it needs to be
// cut into pieces
if (inside0)
{
// shorten it on the 0 side
s->p[0] = ix[0];
s->p[0] = is[0];
continue;
} else
if (inside1)
{
// shorten it on the 1 side
s->p[1] = ix[0];
s->p[1] = is[0];
continue;
} else
if (v2_eq(s->p[0].p, is[0].p, 0.1))
{
// the 0 side is on the triangle, don't bother
continue;
} else
if (v2_eq(s->p[1].p, is[0].p, 0.1))
{
// the 1 side is on the triangle, don't bother
continue;
} else {
fprintf(stderr, "uh, both outside but one intersection?\n");
return;
}
}
if(0) fprintf(stderr, "check: %.0f,%.0f -> %.0f,%.0f %.0f,%.0f %.0f,%.0f %.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[1].p[0],
s->p[1].p[1],
t->p[0].p[0],
t->p[0].p[1],
t->p[1].p[0],
t->p[1].p[1],
t->p[2].p[0],
t->p[2].p[1]
fprintf(stderr, "uh, both outside but one intersection? %.3f,%.3f\n",
is[0].p[0],
is[0].p[1]
);
//return;
seg_print(s);
tri_print(t);
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 0);
continue;
}
}
}
// if we've reached here the segment is visible
@ -1141,6 +1337,13 @@ int main(
char ** argv
)
{
v3_t p0 = {{ 0, 0, 0 }};
v3_t p1 = {{ 100, 100, 100 }};
v3_t p2 = {{ 200, -100, 0 }};
v3_t p3 = {{ 0, 100, 200 }};
v3_t is, it;
hidden_intersect(&p0, &p1, &p2, &p3, &is, &it);
const size_t max_len = 32 << 20;
uint8_t * const buf = calloc(max_len, 1);
@ -1178,6 +1381,8 @@ int main(
seg_t * slist = NULL;
seg_t * slist_visible = NULL;
int retained = 0;
// transform the stl by the camera projection and generate
// a z-sorted list of triangles
for (int i = 0 ; i < num_triangles ; i++)
@ -1212,6 +1417,10 @@ int main(
slist = s;
}
retained++;
if( retained > 3)
break;
continue;
reject:
@ -1220,11 +1429,16 @@ reject:
}
if (debug)
fprintf(stderr, "Rejected %d triangles\n", rejected);
fprintf(stderr, "Retained %d, rejected %d triangles\n", retained, rejected);
for( const tri_t * t = zlist ; t ; t = t->next )
tri_print(t);
// we now have a z-sorted list of triangles
rejected = 0;
if(1)
{
// work on each segment, intersecting it with all of the triangles
while(slist)
{
@ -1234,6 +1448,11 @@ reject:
tri_seg_intersect(zlist, s, &slist_visible);
}
} else {
// don't do any intersection tests
slist_visible = slist;
slist = NULL;
}
// display all of the visible segments
for(seg_t * s = slist_visible ; s ; s = s->next)