papercraft/hiddenwire.c
2017-10-01 14:52:43 -04:00

1472 lines
29 KiB
C

/** \file
* Render a hidden wireframe version of an STL file.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include "v3.h"
#include "camera.h"
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
static int debug = 1;
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
v3_t normal;
v3_t p[3];
uint16_t attr;
} __attribute__((__packed__))
stl_face_t;
typedef struct _tri_t tri_t;
struct _tri_t
{
v3_t p[3];
v3_t normal;
float area;
float min[3];
float max[3];
tri_t * next;
tri_t ** prev;
};
typedef struct _seg_t seg_t;
struct _seg_t {
v3_t p[2];
seg_t * next;
};
#if 0
typedef struct face face_t;
typedef struct poly poly_t;
struct face
{
float sides[3];
face_t * next[3];
int next_edge[3];
int coplanar[3];
int used;
};
// once this triangle has been used, it will be placed
// in a polygon group and fixed in a position relative to that group
struct poly
{
int start_edge;
int printed;
// local coordinates of the triangle vertices
float a;
float x2;
float y2;
float rot;
// absolute coordintes of the triangle vertices
float p[3][2];
// todo: make this const and add backtracking
face_t * face;
poly_t * next[3];
poly_t * work_next;
};
/* Compare two edges in two triangles.
*
* note that if the windings are all the same, the edges will
* compare in the opposite order (for example, the edge from 0 to 1
* compares to the edge from 2 to 1 in the other triangle).
*/
static int
edge_eq2(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v00 = &t0->p[e0];
const v3_t * const v01 = &t0->p[(e0+1) % 3];
const v3_t * const v10 = &t1->p[e1];
const v3_t * const v11 = &t1->p[(e1+1) % 3];
if (v3_eq(v00, v11) && v3_eq(v01, v10))
return 1;
return 0;
}
#endif
void
svg_line(
const char * color,
const float * p1,
const float * p2,
int dash
)
{
if (!dash)
{
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\" stroke-width=\"0.5px\"/>\n",
p1[0],
p1[1],
p2[0],
p2[1],
color
);
return;
}
// dashed line, split in the middle
const float dx = p2[0] - p1[0];
const float dy = p2[1] - p1[1];
const float h1[] = {
p1[0] + dx*0.45,
p1[1] + dy*0.45,
};
const float h2[] = {
p1[0] + dx*0.55,
p1[1] + dy*0.55,
};
svg_line(color, p1, h1, 0);
svg_line(color, h2, p2, 0);
}
#if 0
void
rotate(
float * p,
const float * origin,
float a,
float x,
float y
)
{
p[0] = cos(a) * x - sin(a) * y + origin[0];
p[1] = sin(a) * x + cos(a) * y + origin[1];
}
/* Rotate and translate a triangle */
void
poly_position(
poly_t * const g,
const poly_t * const g_src,
float rot,
float trans_x,
float trans_y
)
{
const face_t * const f = g->face;
const int start_edge = g->start_edge;
float a = f->sides[(start_edge + 0) % 3];
float c = f->sides[(start_edge + 1) % 3];
float b = f->sides[(start_edge + 2) % 3];
float x2 = (a*a + b*b - c*c) / (2*a);
float y2 = sqrt(b*b - x2*x2);
// translate by trans_x/trans_y in the original ref frame
// to get the origin point
float origin[2];
rotate(origin, g_src->p[0], g_src->rot, trans_x, trans_y);
g->rot = g_src->rot + rot;
g->a = a;
g->x2 = x2;
g->y2 = y2;
//fprintf(stderr, "%p %d %f %f %f %f => %f %f %f\n", f, start_edge, g->rot*180/M_PI, a, b, c, x2, y2, rot);
rotate(g->p[0], origin, g->rot, 0, 0);
rotate(g->p[1], origin, g->rot, a, 0);
rotate(g->p[2], origin, g->rot, x2, y2);
}
static void
enqueue(
poly_t * g,
poly_t * const new_g,
int at_head
)
{
if (at_head)
{
new_g->work_next = g->work_next;
g->work_next = new_g;
return;
}
// go to the end of the line
while (g->work_next)
g = g->work_next;
g->work_next = new_g;
}
static poly_t * poly_root;
static float poly_min[2], poly_max[2];
#endif
static inline int
v2_eq(
const float p0[],
const float p1[],
const float eps
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
// are the points within epsilon of each other?
if (-eps < dx && dx < eps
&& -eps < dy && dy < eps)
return 1;
// nope, not equal
return 0;
}
static inline int
v2_dist(
const float p0[],
const float p1[]
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
return sqrt(dx*dx + dy*dy);
}
// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines
// intersect the intersection point may be stored in the floats i_x and i_y.
int
get_line_intersection(
float p0_x,
float p0_y,
float p1_x,
float p1_y,
float p2_x,
float p2_y,
float p3_x,
float p3_y,
float *i_x,
float *i_y
)
{
float s1_x = p1_x - p0_x;
float s1_y = p1_y - p0_y;
float s2_x = p3_x - p2_x;
float s2_y = p3_y - p2_y;
float s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y))
/ (-s2_x * s1_y + s1_x * s2_y);
float t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x))
/ (-s2_x * s1_y + s1_x * s2_y);
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
{
if(1) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
p0_x, p0_y,
p1_x, p1_y,
p2_x, p2_y,
p3_x, p3_y,
s,
t
);
// Collision detected
if (i_x != NULL)
*i_x = p0_x + (t * s1_x);
if (i_y != NULL)
*i_y = p0_y + (t * s1_y);
return 1;
}
return 0; // No collision
}
/** Compute the points of intersection for two segments in 2d, and z points.
*
* This is a specialized ray intersection algorithm for the
* hidden wire-frame removal code that computes the intersection
* points for two rays (in 2D, "orthographic") and then computes
* the Z depth for the intersections along each of the segments.
*
* Returns -1 for non-intersecting, otherwise a ratio of how far
* along the intersection is on the l0.
*/
float
hidden_intersect(
const v3_t * const p0,
const v3_t * const p1,
const v3_t * const p2,
const v3_t * const p3,
v3_t * const l0_int,
v3_t * const l1_int
)
{
const float p0_x = p0->p[0];
const float p0_y = p0->p[1];
const float p0_z = p0->p[2];
const float p1_x = p1->p[0];
const float p1_y = p1->p[1];
const float p1_z = p1->p[2];
const float p2_x = p2->p[0];
const float p2_y = p2->p[1];
const float p2_z = p2->p[2];
const float p3_x = p3->p[0];
const float p3_y = p3->p[1];
const float p3_z = p3->p[2];
const float s1_x = p1_x - p0_x;
const float s1_y = p1_y - p0_y;
const float s2_x = p3_x - p2_x;
const float s2_y = p3_y - p2_y;
// compute r x s
const float d = -s2_x * s1_y + s1_x * s2_y;
// if they are close to parallel, then we do not need to check
// for intersection (we define that as "non-intersecting")
if (-EPS < d && d < EPS)
return -1;
// Compute how far along each line they would interesect
const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
// if they are not within the ratio (0,1), then the intersecton occurs
// outside of the segments and is not of concern
if (r0 < 0 || r0 > 1)
return -1;
if (r1 < 0 || r1 > 1)
return -1;
// Collision detected with the segments
if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n",
p0_x, p0_y, p0_z,
p1_x, p1_y, p1_z,
p2_x, p2_y, p2_z,
p3_x, p3_y, p2_z,
r0,
r1
);
const float ix = p0_x + (r0 * s1_x);
const float iy = p0_y + (r0 * s1_y);
// compute the z intercept for each on the two different coordinates
if(l0_int)
{
*l0_int = (v3_t){{
ix,
iy,
p0_z + r0 * (p1_z - p0_z)
}};
}
if(l1_int)
{
*l1_int = (v3_t){{
ix,
iy,
p2_z + r1 * (p3_z - p2_z)
}};
}
return r0;
}
#if 0
/** Check to see if two triangles overlap */
int
overlap_poly(
const poly_t * const g1,
const poly_t * const g2
)
{
if (intersect(g1->p[0], g1->p[1], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[0], g1->p[1], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[0], g1->p[1], g2->p[2], g2->p[0]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[2], g2->p[0]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[2], g2->p[0]))
return 1;
return 0;
}
/** Check to see if any triangles overlap */
int
overlap_check(
const poly_t * g,
const poly_t * const new_g
)
{
// special case -- if the root is the same as the one that we
// are checking, then it does not overlap
if (g == new_g)
return 0;
while (g)
{
if (overlap_poly(g, new_g))
return 1;
g = g->work_next;
}
return 0;
}
/** recursively try to fix up the triangles.
*
* returns the maximum number of triangles added
*/
int
poly_build(
poly_t * const g
)
{
face_t * const f = g->face;
const int start_edge = g->start_edge;
f->used = 1;
// update the group's bounding box
for (int i = 0 ; i < 3 ; i++)
{
const float px = g->p[i][0];
const float py = g->p[i][1];
if (px < poly_min[0]) poly_min[0] = px;
if (px > poly_max[0]) poly_max[0] = px;
if (py < poly_min[1]) poly_min[1] = py;
if (py > poly_max[1]) poly_max[1] = py;
}
if (debug) fprintf(stderr, "%p: adding to poly\n", f);
for(int pass = 0 ; pass < 2 ; pass++)
{
// for each edge, find the triangle that matches
for (int i = 0 ; i < 3 ; i++)
{
const int edge = (i + start_edge) % 3;
face_t * const f2 = f->next[edge];
assert(f2 != NULL);
if (f2->used)
continue;
if (pass == 0 && f->coplanar[edge] == 0)
continue;
// create a group that translates and rotates
// such that it lines up with this edge
float trans_x, trans_y, rotate;
if (i == 0)
{
trans_x = g->a;
trans_y = 0;
rotate = M_PI;
} else
if (i == 1)
{
trans_x = g->x2;
trans_y = g->y2;
rotate = -atan2(g->y2, g->a - g->x2);
} else
if (i == 2)
{
trans_x = 0;
trans_y = 0;
rotate = atan2(g->y2, g->x2);
} else {
errx(EXIT_FAILURE, "edge %d invalid?\n", i);
}
// position this one translated and rotated
poly_t * const g2 = calloc(1, sizeof(*g2));
g2->face = f2;
g2->start_edge = f->next_edge[edge];
poly_position(
g2,
g,
rotate,
trans_x,
trans_y
);
if (overlap_check(poly_root, g2))
{
free(g2);
continue;
}
// no overlap, add it to the current group
g->next[i] = g2;
g2->next[0] = g;
f2->used = 1;
// if g2 is a coplanar triangle, process it now rather than
// defering the work.
if (f->coplanar[edge] == 0)
enqueue(g, g2, 1);
else
enqueue(g, g2, 0);
}
}
return 0;
}
void
svg_text(
float x,
float y,
float angle,
const char * fmt,
...
)
{
printf("<g transform=\"translate(%f %f) rotate(%f)\">",
x,
y,
angle
);
printf("<text x=\"-2\" y=\"1.5\" style=\"font-size:1.5px;\">");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("</text></g>\n");
}
void
poly_print(
poly_t * const g
)
{
const face_t * const f = g->face;
const int start_edge = g->start_edge;
g->printed = 1;
// draw this triangle;
// if the edge is an outside, which means that the group
// has no next element, draw a cut line. If there is an
// adjacent neighbor and it is not coplanar, draw a score line
printf("<g><!-- %p %d %f %f->%p %f->%p %f->%p -->\n",
f,
g->start_edge, g->rot * 180/M_PI,
f->sides[0],
f->next[0],
f->sides[1],
f->next[1],
f->sides[2],
f->next[2]
);
int cut_lines = 0;
const uintptr_t a1 = (0x7FFFF & (uintptr_t) f) >> 3;
for (int i = 0 ; i < 3 ; i++)
{
const int edge = (start_edge + i) % 3;
poly_t * const next = g->next[i];
if (!next)
{
// draw a cut line
const float * const p1 = g->p[i];
const float * const p2 = g->p[(i+1) % 3];
const float cx = (p2[0] + p1[0]) / 2;
const float cy = (p2[1] + p1[1]) / 2;
const float dx = (p2[0] - p1[0]);
const float dy = (p2[1] - p1[1]);
const float angle = atan2(dy, dx) * 180 / M_PI;
svg_line("#FF0000", p1, p2, 0);
cut_lines++;
// use the lower address as the label
if (draw_labels)
{
uintptr_t a2 = (0x7FFFF & (uintptr_t) f->next[edge]) >> 3;
if (a2 > a1)
a2 = a1;
svg_text(cx, cy, angle, "%04x", a2);
}
continue;
}
if (next->printed)
continue;
if (f->coplanar[edge] < 0)
{
// draw a mountain score line since they are not coplanar
svg_line("#00FF00", g->p[i], g->p[(i+1) % 3], 1);
} else
if (f->coplanar[edge] > 0)
{
// draw a valley score line since they are not coplanar
svg_line("#00FF00", g->p[i], g->p[(i+1) % 3], 0);
} else {
// draw a shadow line since they are coplanar
//svg_line("#F0F0F0", g->p[i], g->p[(i+1) % 3]);
}
}
/*
// only draw labels if requested and if there are any cut-edges
// on this polygon.
const float tx = (g->p[0][0] + g->p[1][0] + g->p[2][0]) / 3.0;
const float ty = (g->p[0][1] + g->p[1][1] + g->p[2][1]) / 3.0;
if (draw_labels && cut_lines > 0)
svg_text(tx, ty, 0, "%04x",
(0x7FFFF & (uintptr_t) f) >> 3);
*/
printf("</g>\n");
for (int i = 0 ; i < 3 ; i++)
{
poly_t * const next = g->next[i];
if (!next || next->printed)
continue;
poly_print(next);
}
}
/* Returns the 0 for coplanar, negative for mountain, positive for valley.
* (approximates the angle between two triangles that share one edge).
*/
int
coplanar_check(
const stl_face_t * const f1,
const stl_face_t * const f2
)
{
// find the four distinct points
v3_t x1 = f1->p[0];
v3_t x2 = f1->p[1];
v3_t x3 = f1->p[2];
v3_t x4;
for (int i = 0 ; i < 3 ; i++)
{
x4 = f2->p[i];
if (v3_eq(&x1, &x4))
continue;
if (v3_eq(&x2, &x4))
continue;
if (v3_eq(&x3, &x4))
continue;
break;
}
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
v3_t dx31 = v3_sub(x3, x1);
v3_t dx21 = v3_sub(x2, x1);
v3_t dx43 = v3_sub(x4, x3);
v3_t cross = v3_cross(dx21, dx43);
float dot = v3_dot(dx31, cross);
int check = -EPS < dot && dot < +EPS;
if (debug) fprintf( stderr, "%p %p %s: %f\n", f1, f2, check ? "yes" : "no", dot);
return (int) dot;
}
/** Translate a list of STL triangles into a connected graph of faces.
*
* If there are any triangles that do not have three connected edges,
* the first error will be reported and NULL will be returned.
*/
face_t *
stl2faces(
const stl_face_t * const stl_faces,
const int num_triangles
)
{
face_t * const faces = calloc(num_triangles, sizeof(*faces));
// convert the stl triangles into faces
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
if (debug) fprintf(stderr, "%p %f %f %f\n",
f, f->sides[0], f->sides[1], f->sides[2]);
}
// look to see if there is a matching point
// in the faces that we've already built
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
for (int j = 0 ; j < num_triangles ; j++)
{
if (i == j)
continue;
const stl_face_t * const stl2 = &stl_faces[j];
face_t * const f2 = &faces[j];
for (int edge = 0 ; edge < 3 ; edge++)
{
if (f->next[edge])
continue;
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
{
if (f2->next[edge2])
continue;
if (!edge_eq2(stl, stl2, edge, edge2))
continue;
f->next[edge] = f2;
f->next_edge[edge] = edge2;
f2->next[edge2] = f;
f2->next_edge[edge2] = edge;
f->coplanar[edge] =
f2->coplanar[edge2] = coplanar_check(stl, stl2);
}
}
}
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
fprintf(stderr, "%d missing edges?\n", i);
free(faces);
return NULL;
}
return faces;
}
#endif
/*
s = 1/(2*Area)*(p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py);
t = 1/(2*Area)*(p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py);
where Area is the (signed) area of the triangle:
Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
Just evaluate s, t and 1-s-t. The point p is inside the triangle if and only if they are all positive.
*/
int
tri_inside(
const tri_t * const t,
const v3_t * const p
)
{
const float p0x = t->p[0].p[0];
const float p0y = t->p[0].p[1];
const float p1x = t->p[1].p[0];
const float p1y = t->p[1].p[1];
const float p2x = t->p[2].p[0];
const float p2y = t->p[2].p[1];
const float px = p->p[0];
const float py = p->p[1];
const float u = p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py;
const float v = p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py;
if (u <= 0 || v <= 0)
return 0;
// maybe inside; check for sure
if (u + v >= 2 * t->area)
return 0;
// inside!
if(0) fprintf(stderr, "%p: %f,%f inside %f,%f %f,%f %f,%f\n",
t,
px, py,
p0x, p0y,
p1x, p1y,
p2x, p2y
);
return 1;
}
tri_t *
tri_new(
const v3_t * p
)
{
tri_t * const t = calloc(1, sizeof(*t));
if (!t)
return NULL;
for(int i = 0 ; i < 3 ; i++)
t->p[i] = p[i];
// precompute the area
const float p0x = t->p[0].p[0];
const float p0y = t->p[0].p[1];
const float p1x = t->p[1].p[0];
const float p1y = t->p[1].p[1];
const float p2x = t->p[2].p[0];
const float p2y = t->p[2].p[1];
t->area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
// precompute the normal
t->normal = v3_cross(
v3_sub(t->p[1], t->p[0]),
v3_sub(t->p[2], t->p[1])
);
// compute the bounding box for the triangle
for(int j = 0 ; j < 3 ; j++)
{
t->min[j] = min(min(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
t->max[j] = max(max(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
}
return t;
}
// insert a triangle into our z-sorted list
void
tri_insert(
tri_t ** zlist,
tri_t * t
)
{
while(1)
{
tri_t * const iter = *zlist;
if (!iter)
break;
// check to see if our new triangle is closer than
// the current triangle
if(iter->min[2] > t->min[2])
break;
zlist = &(iter->next);
}
// either we reached the end of the list,
// or we have found where our new triangle is sorted
t->next = *zlist;
*zlist = t;
if (t->next)
t->next->prev = &t->next;
}
void
tri_delete(tri_t * t)
{
if (t->next)
t->next->prev = t->prev;
if (t->prev)
*(t->prev) = t->next;
t->next = NULL;
t->prev = NULL;
free(t);
}
int
tri_occluded(
const tri_t * zlist,
const tri_t * t
)
{
for( const tri_t * t2 = zlist ; t2 ; t2 = t2->next )
{
if (t2 == t)
continue;
// if any of the points of t are outside of t2,
// then t2 does not totally occlude t
if (!tri_inside(t2, &t->p[0]))
continue;
if (!tri_inside(t2, &t->p[1]))
continue;
if (!tri_inside(t2, &t->p[2]))
continue;
// if any point of t2 is behind t, then it does not occlude
// (might intersect, but we don't handle that)
if (t2->min[2] > t->min[2])
continue;
// looks like we might be occluded
return 1;
}
// probably not occluded
return 0;
}
seg_t *
seg_new(
const v3_t p0,
const v3_t p1
)
{
seg_t * const s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->p[0] = p0;
s->p[1] = p1;
s->next = NULL;
return s;
}
void
seg_print(
const seg_t * const s
)
{
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[1].p[0],
s->p[1].p[1]
);
}
void
tri_print(
const tri_t * const t
)
{
fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f\n",
t->p[0].p[0],
t->p[0].p[1],
t->p[0].p[2],
t->p[1].p[0],
t->p[1].p[1],
t->p[1].p[2],
t->p[2].p[0],
t->p[2].p[1],
t->p[2].p[2]
);
}
/** Find the Z point of a given xy point along the segment from p0 to p1.
*
* Returns -1 if there is no known Z point.
*/
float
find_z(
const v3_t * const p0,
const v3_t * const p1,
const float x,
const float y
)
{
const float dx = p1->p[0] - p0->p[0];
const float dy = p1->p[1] - p0->p[1];
const float dz = p1->p[2] - p0->p[2];
// find the z value of the intersection point
// on the segment. we don't care about the triangle
float ratio = 0;
if (dx != 0)
{
ratio = (x - p0->p[0]) / dx;
} else
if (dy != 0)
{
ratio = (y - p0->p[1]) / dy;
} else {
fprintf(stderr, "uh, dx and dy both zero?\n");
return -1;
}
return p0->p[2] + dz * ratio;
}
/*
int
tri_line_intersect(
const tri_t * zlist,
const tri_t * t
)
{
for( const tri_t * t2 = zlist ; t2 ; t2 = t2->next )
{
if (t2 == t)
continue;
for(int j = 0 ; j < 3 ; j++)
{
const v3_t * const p0 = &t->p[j].p;
const v3_t * const p1 = &t->p[(j+1) % 3].p;
*/
/*
* Recursive algorithm:
* Given a line segment and a list of triangles,
* find if the line segment crosses any triangle.
* If it crosses a triangle the segment will be shortened
* and an additional one might be created.
* Recusively try intersecting the new segment (starting at the same triangle)
* and then continue trying the shortened segment.
*/
void
tri_seg_intersect(
const tri_t * zlist,
seg_t * s,
seg_t ** slist_visible
)
{
const float p0z = s->p[0].p[2];
const float p1z = s->p[1].p[2];
const float seg_max_z = max(p0z, p1z);
for( const tri_t * t = zlist ; t ; t = t->next )
{
// if the segment is closer than the triangle,
// then we no longer have to check any further into
// the zlist (it is sorted by depth).
if (seg_max_z <= t->min[2])
break;
#if 0
// make sure that we're not comparing to our own triangle
// or one that shares an edge with us (which might be in
// a different order)
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
continue;
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
continue;
// do a quick test of does this segment even comes
// close to this triangle
if (p0x < t->min[0] && p1x < t->min[0]
&& p0y < t->min[1] && p1y < t->min[1])
continue;
if (p0x > t->max[0] && p1x > t->max[0]
&& p0y > t->max[2] && p1y > t->max[2])
continue;
if (p0x < t->min[0] && p1x < t->min[0]
&& p0y > t->max[2] && p1y > t->max[2])
continue;
if (p0x > t->max[0] && p1x > t->max[0]
&& p0y < t->min[1] && p1y < t->min[1])
continue;
// make sure this isn't the same actual line
if (v3_eq(&s->src[0], &t->p[0]) || v3_eq(&s->src[1], &t->p[1]))
continue;
if (v3_eq(&s->src[0], &t->p[1]) || v3_eq(&s->src[1], &t->p[2]))
continue;
if (v3_eq(&s->src[0], &t->p[2]) || v3_eq(&s->src[1], &t->p[0]))
continue;
#endif
int inside0 = tri_inside(t, &s->p[0]);
int inside1 = tri_inside(t, &s->p[1]);
// if both are inside we discard this segment
if (inside0 && inside1)
{
//svg_line("#0000FF", s->p[0].p, s->p[1].p, 0);
//svg_line("#00FF00", t->p[0].p, t->p[1].p, 0);
//svg_line("#00FF00", t->p[1].p, t->p[2].p, 0);
//svg_line("#00FF00", t->p[2].p, t->p[0].p, 0);
fprintf(stderr, "BOTH INSIDE\n");
tri_print(t);
seg_print(s);
return;
}
// split the segment for each intersection with the
// triangle segments and add it to the work queue.
int intersections = 0;
v3_t is[3] = {}; // 3d point of segment intercept
v3_t it[3] = {}; // 3d point of triangle intercept
for(int j = 0 ; j < 3 ; j++)
{
float ratio = hidden_intersect(
&s->p[0], &s->p[1],
&t->p[j], &t->p[(j+1)%3],
&is[intersections],
&it[intersections]
);
if (ratio < 0)
continue;
// deal with corner cases where the segment
// exactly lines up with the triangle edge
// we do not treat this as an intersection
if (-EPS < ratio && ratio < EPS)
{
inside0 = 0;
} else
if (1-EPS < ratio && ratio < 1+EPS)
{
inside1 = 0;
} else {
// this is a real intersection
intersections++;
}
}
// if none of them intersect, we keep looking
if (intersections == 0)
continue;
fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
if (intersections == 3)
{
fprintf(stderr, "uh, three intersections?\n");
return;
}
if (intersections == 2)
{
if (inside0 || inside1)
{
fprintf(stderr, "uh, inside but two intersections?\n");
//return;
}
// if the segment intersection is closer than the triangle,
// then we do nothing. degenerate cases are not handled
if (is[0].p[2] <= it[0].p[2]
|| is[1].p[2] <= it[1].p[2])
{
fprintf(stderr, "ignoring collision since z %f < %f || %f < %f\n",
is[0].p[2], it[0].p[2],
is[1].p[2], it[1].p[2]);
continue;
}
// segment is behind the triangle,
// we have to create a new segment
// and shorten the existing segment
// find the two intersections that we have
// update the src field
const float d0 = v3_len(&s->p[0], &is[0]);
const float d1 = v3_len(&s->p[0], &is[1]);
fprintf(stderr, "two intersections %.0f %.0f\n", d0, d1);
seg_t * news;
if (d0 < d1)
{
// split from p0 to ix0
news = seg_new(s->p[0], is[0]);
s->p[0] = is[1];
} else {
// split from p0 to ix1
news = seg_new(s->p[0], is[1]);
s->p[0] = is[0];
}
fprintf(stderr, "old segment:" );
seg_print(s);
fprintf(stderr, "new segment:" );
seg_print(news);
// recursively start splitting the new segment
// starting at our current z-depth
tri_seg_intersect(zlist, news, slist_visible);
// continue splitting our current segment
continue;
}
if (intersections == 1)
{
// if there is an intersection, but the segment intercept
// is close than the triangle intercept, then no problem.
// we do not bother with degenerate cases of intersecting
// triangles
if (is[0].p[2] <= it[0].p[2])
continue;
// segment is behind the triangle, so it needs to be
// cut into pieces
if (inside0)
{
// shorten it on the 0 side
s->p[0] = is[0];
continue;
} else
if (inside1)
{
// shorten it on the 1 side
s->p[1] = is[0];
continue;
} else
if (v2_eq(s->p[0].p, is[0].p, 0.1))
{
// the 0 side is on the triangle, don't bother
continue;
} else
if (v2_eq(s->p[1].p, is[0].p, 0.1))
{
// the 1 side is on the triangle, don't bother
continue;
} else {
fprintf(stderr, "uh, both outside but one intersection? %.3f,%.3f\n",
is[0].p[0],
is[0].p[1]
);
seg_print(s);
tri_print(t);
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 0);
continue;
}
}
}
// if we've reached here the segment is visible
// and should be added to the visible list
if(0) fprintf(stderr, "good: %.0f,%.0f,%.0f-> %.0f,%.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[0].p[2],
s->p[1].p[0],
s->p[1].p[1],
s->p[1].p[2]
);
s->next = *slist_visible;
*slist_visible = s;
}
int main(
int argc,
char ** argv
)
{
v3_t p0 = {{ 0, 0, 0 }};
v3_t p1 = {{ 100, 100, 100 }};
v3_t p2 = {{ 200, -100, 0 }};
v3_t p3 = {{ 0, 100, 200 }};
v3_t is, it;
hidden_intersect(&p0, &p1, &p2, &p3, &is, &it);
const size_t max_len = 32 << 20;
uint8_t * const buf = calloc(max_len, 1);
float phi = argc > 1 ? atof(argv[1]) * M_PI/180 : 0;
float theta = argc > 2 ? atof(argv[2]) * M_PI/180 : 0;
float psi = argc > 3 ? atof(argv[3]) * M_PI/180 : 0;
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
if(debug)
{
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
}
// looking at (0,0,0)
v3_t eye = { { 0, 0, 400 } };
const camera_t * const cam = camera_new(eye, phi, theta, psi);
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
float off_x = 500;
float off_y = 500;
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
int rejected = 0;
tri_t * zlist = NULL;
seg_t * slist = NULL;
seg_t * slist_visible = NULL;
int retained = 0;
// transform the stl by the camera projection and generate
// a z-sorted list of triangles
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
v3_t s[3];
for(int j = 0 ; j < 3 ; j++)
camera_project(cam, &stl->p[j], &s[j]);
tri_t * const tri = tri_new(s);
// reject this face if any of the vertices are behind us
if (tri->min[2] < 0)
goto reject;
// do a back-face cull to determine if this triangle
// is not facing us. we have to determine the orientation
// from the winding of the new projection
if (tri->normal.p[2] <= 0)
goto reject;
// it passes the first tests, so insert the triangle
// into the list and the three line segments
tri_insert(&zlist, tri);
for(int j = 0 ; j < 3 ; j++)
{
seg_t * s = seg_new(tri->p[j], tri->p[(j+1) % 3]);
s->next = slist;
slist = s;
}
retained++;
if( retained > 3)
break;
continue;
reject:
tri_delete(tri);
rejected++;
}
if (debug)
fprintf(stderr, "Retained %d, rejected %d triangles\n", retained, rejected);
for( const tri_t * t = zlist ; t ; t = t->next )
tri_print(t);
// we now have a z-sorted list of triangles
rejected = 0;
if(1)
{
// work on each segment, intersecting it with all of the triangles
while(slist)
{
seg_t * s = slist;
slist = s->next;
tri_seg_intersect(zlist, s, &slist_visible);
}
} else {
// don't do any intersection tests
slist_visible = slist;
slist = NULL;
}
// display all of the visible segments
for(seg_t * s = slist_visible ; s ; s = s->next)
{
svg_line("#FF0000", s->p[0].p, s->p[1].p, 0);
}
if (debug)
fprintf(stderr, "Occluded %d triangles\n", rejected);
printf("</g>\n");
printf("</svg>\n");
return 0;
}