it almost works. so close
This commit is contained in:
parent
ae46476d09
commit
f2fe56eb86
312
hiddenwire.c
312
hiddenwire.c
@ -41,7 +41,6 @@ struct _tri_t
|
||||
{
|
||||
v3_t p[3];
|
||||
v3_t normal;
|
||||
float area;
|
||||
float min[3];
|
||||
float max[3];
|
||||
tri_t * next;
|
||||
@ -52,6 +51,7 @@ struct _tri_t
|
||||
typedef struct _seg_t seg_t;
|
||||
struct _seg_t {
|
||||
v3_t p[2];
|
||||
v3_t src[2];
|
||||
seg_t * next;
|
||||
};
|
||||
|
||||
@ -268,56 +268,6 @@ v2_dist(
|
||||
}
|
||||
|
||||
|
||||
// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines
|
||||
// intersect the intersection point may be stored in the floats i_x and i_y.
|
||||
int
|
||||
get_line_intersection(
|
||||
float p0_x,
|
||||
float p0_y,
|
||||
float p1_x,
|
||||
float p1_y,
|
||||
float p2_x,
|
||||
float p2_y,
|
||||
float p3_x,
|
||||
float p3_y,
|
||||
float *i_x,
|
||||
float *i_y
|
||||
)
|
||||
{
|
||||
float s1_x = p1_x - p0_x;
|
||||
float s1_y = p1_y - p0_y;
|
||||
float s2_x = p3_x - p2_x;
|
||||
float s2_y = p3_y - p2_y;
|
||||
|
||||
float s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y))
|
||||
/ (-s2_x * s1_y + s1_x * s2_y);
|
||||
|
||||
float t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x))
|
||||
/ (-s2_x * s1_y + s1_x * s2_y);
|
||||
|
||||
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
|
||||
{
|
||||
if(1) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
|
||||
p0_x, p0_y,
|
||||
p1_x, p1_y,
|
||||
p2_x, p2_y,
|
||||
p3_x, p3_y,
|
||||
s,
|
||||
t
|
||||
);
|
||||
|
||||
// Collision detected
|
||||
if (i_x != NULL)
|
||||
*i_x = p0_x + (t * s1_x);
|
||||
if (i_y != NULL)
|
||||
*i_y = p0_y + (t * s1_y);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0; // No collision
|
||||
}
|
||||
|
||||
|
||||
/** Compute the points of intersection for two segments in 2d, and z points.
|
||||
*
|
||||
* This is a specialized ray intersection algorithm for the
|
||||
@ -813,20 +763,15 @@ stl2faces(
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
s = 1/(2*Area)*(p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py);
|
||||
t = 1/(2*Area)*(p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py);
|
||||
where Area is the (signed) area of the triangle:
|
||||
|
||||
Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
|
||||
Just evaluate s, t and 1-s-t. The point p is inside the triangle if and only if they are all positive.
|
||||
*/
|
||||
int
|
||||
tri_inside(
|
||||
const tri_t * const t,
|
||||
const v3_t * const p
|
||||
const v3_t * const p,
|
||||
v3_t * const bary
|
||||
)
|
||||
{
|
||||
#if 1
|
||||
const float p0x = t->p[0].p[0];
|
||||
const float p0y = t->p[0].p[1];
|
||||
const float p1x = t->p[1].p[0];
|
||||
@ -837,14 +782,24 @@ tri_inside(
|
||||
const float px = p->p[0];
|
||||
const float py = p->p[1];
|
||||
|
||||
const float u = p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py;
|
||||
const float v = p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py;
|
||||
|
||||
if (u <= 0 || v <= 0)
|
||||
// compute the barycentric coordinates of p in triangle t
|
||||
const float a = (p1y - p2y)*(p0x - p2x) + (p2x - p1x)*(p0y - p2y);
|
||||
//fprintf(stderr, "a=%f\n", a);
|
||||
if (-EPS < a && a < EPS)
|
||||
{
|
||||
// triangle is too small
|
||||
return 0;
|
||||
}
|
||||
|
||||
// maybe inside; check for sure
|
||||
if (u + v >= 2 * t->area)
|
||||
const float alpha = ((p1y - p2y)*(px - p2x) + (p2x - p1x)*(py - p2y));
|
||||
const float beta = ((p2y - p0y)*(px - p2x) + (p0x - p2x)*(py - p2y));
|
||||
const float gamma = a - alpha - beta;
|
||||
|
||||
if (bary)
|
||||
*bary = (v3_t) {{ alpha, beta, gamma }};
|
||||
|
||||
if(0) fprintf(stderr, "a=%f b=%f g=%f\n", alpha, beta, gamma);
|
||||
if (alpha < 0 || beta < 0 || gamma < 0)
|
||||
return 0;
|
||||
|
||||
// inside!
|
||||
@ -856,6 +811,26 @@ if(0) fprintf(stderr, "%p: %f,%f inside %f,%f %f,%f %f,%f\n",
|
||||
p2x, p2y
|
||||
);
|
||||
|
||||
#else
|
||||
|
||||
const v3_t v1 = v3_sub(t->p[2], t->p[0]);
|
||||
const v3_t v2 = v3_sub(t->p[1], t->p[0]);
|
||||
const v3_t v = v3_sub(*p, t->p[0]);
|
||||
|
||||
const float d = det(v1,v2);
|
||||
const float a = (det(*p,v2) - det(t->p[0], v2)) / +d;
|
||||
const float b = (det(*p,v1) - det(t->p[0], v1)) / -d;
|
||||
//const float a = +det(v,v2) / d;
|
||||
//const float b = -det(v,v1) / d;
|
||||
|
||||
fprintf(stderr, "a=%f b=%f d=%f\n", a, b, d);
|
||||
if (a < 0 || b < 0)
|
||||
return 0;
|
||||
if (a + b > 1)
|
||||
return 0;
|
||||
|
||||
#endif
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -869,17 +844,8 @@ tri_new(
|
||||
if (!t)
|
||||
return NULL;
|
||||
for(int i = 0 ; i < 3 ; i++)
|
||||
t->p[i] = p[i];
|
||||
|
||||
// precompute the area
|
||||
const float p0x = t->p[0].p[0];
|
||||
const float p0y = t->p[0].p[1];
|
||||
const float p1x = t->p[1].p[0];
|
||||
const float p1y = t->p[1].p[1];
|
||||
const float p2x = t->p[2].p[0];
|
||||
const float p2y = t->p[2].p[1];
|
||||
|
||||
t->area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
t->p[i].p[j] = p[i].p[j];
|
||||
|
||||
// precompute the normal
|
||||
t->normal = v3_cross(
|
||||
@ -943,40 +909,6 @@ tri_delete(tri_t * t)
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
tri_occluded(
|
||||
const tri_t * zlist,
|
||||
const tri_t * t
|
||||
)
|
||||
{
|
||||
for( const tri_t * t2 = zlist ; t2 ; t2 = t2->next )
|
||||
{
|
||||
if (t2 == t)
|
||||
continue;
|
||||
|
||||
// if any of the points of t are outside of t2,
|
||||
// then t2 does not totally occlude t
|
||||
if (!tri_inside(t2, &t->p[0]))
|
||||
continue;
|
||||
if (!tri_inside(t2, &t->p[1]))
|
||||
continue;
|
||||
if (!tri_inside(t2, &t->p[2]))
|
||||
continue;
|
||||
|
||||
// if any point of t2 is behind t, then it does not occlude
|
||||
// (might intersect, but we don't handle that)
|
||||
if (t2->min[2] > t->min[2])
|
||||
continue;
|
||||
|
||||
// looks like we might be occluded
|
||||
return 1;
|
||||
}
|
||||
|
||||
// probably not occluded
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
seg_t *
|
||||
seg_new(
|
||||
const v3_t p0,
|
||||
@ -988,6 +920,8 @@ seg_new(
|
||||
return NULL;
|
||||
s->p[0] = p0;
|
||||
s->p[1] = p1;
|
||||
s->src[0] = p0;
|
||||
s->src[1] = p1;
|
||||
s->next = NULL;
|
||||
|
||||
return s;
|
||||
@ -999,11 +933,15 @@ seg_print(
|
||||
const seg_t * const s
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f\n",
|
||||
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f (was %.0f,%.0f -> %.0f,%.0f\n",
|
||||
s->p[0].p[0],
|
||||
s->p[0].p[1],
|
||||
s->p[1].p[0],
|
||||
s->p[1].p[1]
|
||||
s->p[1].p[1],
|
||||
s->src[0].p[0],
|
||||
s->src[0].p[1],
|
||||
s->src[1].p[0],
|
||||
s->src[1].p[1]
|
||||
);
|
||||
}
|
||||
|
||||
@ -1100,6 +1038,14 @@ tri_seg_intersect(
|
||||
const float p1z = s->p[1].p[2];
|
||||
const float seg_max_z = max(p0z, p1z);
|
||||
|
||||
// avoid processing empty segments
|
||||
const float seg_len = v3_len(&s->p[0], &s->p[1]);
|
||||
if (seg_len < EPS)
|
||||
return;
|
||||
|
||||
static int recursive;
|
||||
fprintf(stderr, "%d: processing segment ", recursive++); seg_print(s);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
{
|
||||
// if the segment is closer than the triangle,
|
||||
@ -1108,29 +1054,31 @@ tri_seg_intersect(
|
||||
if (seg_max_z <= t->min[2])
|
||||
break;
|
||||
|
||||
|
||||
#if 0
|
||||
// make sure that we're not comparing to our own triangle
|
||||
// or one that shares an edge with us (which might be in
|
||||
// a different order)
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.5))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.5))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.5))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.5))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.5))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.5)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.5))
|
||||
continue;
|
||||
|
||||
//fprintf(stderr, "triangle "); tri_print(t);
|
||||
|
||||
#if 0
|
||||
// do a quick test of does this segment even comes
|
||||
// close to this triangle
|
||||
if (p0x < t->min[0] && p1x < t->min[0]
|
||||
@ -1155,8 +1103,9 @@ tri_seg_intersect(
|
||||
continue;
|
||||
#endif
|
||||
|
||||
int inside0 = tri_inside(t, &s->p[0]);
|
||||
int inside1 = tri_inside(t, &s->p[1]);
|
||||
v3_t bary[2] = {};
|
||||
int inside0 = tri_inside(t, &s->p[0], &bary[0]);
|
||||
int inside1 = tri_inside(t, &s->p[1], &bary[1]);
|
||||
|
||||
// if both are inside we discard this segment
|
||||
if (inside0 && inside1)
|
||||
@ -1165,9 +1114,14 @@ tri_seg_intersect(
|
||||
//svg_line("#00FF00", t->p[0].p, t->p[1].p, 0);
|
||||
//svg_line("#00FF00", t->p[1].p, t->p[2].p, 0);
|
||||
//svg_line("#00FF00", t->p[2].p, t->p[0].p, 0);
|
||||
if(0) {
|
||||
fprintf(stderr, "BOTH INSIDE\n");
|
||||
tri_print(t);
|
||||
seg_print(s);
|
||||
fprintf(stderr, "bary0 %f,%f,%f\n", bary[0].p[0], bary[0].p[1], bary[0].p[2]);
|
||||
fprintf(stderr, "bary1 %f,%f,%f\n", bary[1].p[0], bary[1].p[1], bary[1].p[2]);
|
||||
}
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1192,6 +1146,7 @@ seg_print(s);
|
||||
// deal with corner cases where the segment
|
||||
// exactly lines up with the triangle edge
|
||||
// we do not treat this as an intersection
|
||||
/*
|
||||
if (-EPS < ratio && ratio < EPS)
|
||||
{
|
||||
inside0 = 0;
|
||||
@ -1203,35 +1158,35 @@ seg_print(s);
|
||||
// this is a real intersection
|
||||
intersections++;
|
||||
}
|
||||
*/
|
||||
intersections++;
|
||||
}
|
||||
|
||||
// if none of them intersect, we keep looking
|
||||
if (intersections == 0)
|
||||
continue;
|
||||
|
||||
fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
|
||||
//fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
|
||||
if (intersections == 3)
|
||||
{
|
||||
fprintf(stderr, "uh, three intersections?\n");
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
if (intersections == 2)
|
||||
{
|
||||
if (inside0 || inside1)
|
||||
{
|
||||
fprintf(stderr, "uh, inside but two intersections?\n");
|
||||
//return;
|
||||
}
|
||||
|
||||
// if the segment intersection is closer than the triangle,
|
||||
// then we do nothing. degenerate cases are not handled
|
||||
if (is[0].p[2] <= it[0].p[2]
|
||||
|| is[1].p[2] <= it[1].p[2])
|
||||
{
|
||||
/*
|
||||
fprintf(stderr, "ignoring collision since z %f < %f || %f < %f\n",
|
||||
is[0].p[2], it[0].p[2],
|
||||
is[1].p[2], it[1].p[2]);
|
||||
*/
|
||||
|
||||
continue;
|
||||
}
|
||||
@ -1241,30 +1196,53 @@ fprintf(stderr, "ignoring collision since z %f < %f || %f < %f\n",
|
||||
// and shorten the existing segment
|
||||
// find the two intersections that we have
|
||||
// update the src field
|
||||
|
||||
const float d00 = v3_len(&s->p[0], &is[0]);
|
||||
const float d01 = v3_len(&s->p[0], &is[1]);
|
||||
const float d10 = v3_len(&s->p[1], &is[0]);
|
||||
const float d11 = v3_len(&s->p[1], &is[1]);
|
||||
//fprintf(stderr, "two intersections %.0f %.0f\n", d00, d01);
|
||||
|
||||
const float d0 = v3_len(&s->p[0], &is[0]);
|
||||
const float d1 = v3_len(&s->p[0], &is[1]);
|
||||
fprintf(stderr, "two intersections %.0f %.0f\n", d0, d1);
|
||||
// discard segments that have two interesections that match
|
||||
// the segment exactly (distance from segment ends to
|
||||
// intersection point close enough to zero).
|
||||
if (d00 < EPS && d11 < EPS)
|
||||
{
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
if (d01 < EPS && d10 < EPS)
|
||||
{
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
|
||||
// we need to create a new segment
|
||||
seg_t * news;
|
||||
if (d0 < d1)
|
||||
if (d00 < d01)
|
||||
{
|
||||
// split from p0 to ix0
|
||||
news = seg_new(s->p[0], is[0]);
|
||||
news->src[0] = s->src[0];
|
||||
news->src[1] = s->src[1];
|
||||
s->p[0] = is[1];
|
||||
} else {
|
||||
// split from p0 to ix1
|
||||
news = seg_new(s->p[0], is[1]);
|
||||
news->src[0] = s->src[0];
|
||||
news->src[1] = s->src[1];
|
||||
s->p[0] = is[0];
|
||||
}
|
||||
/*
|
||||
fprintf(stderr, "old segment:" );
|
||||
seg_print(s);
|
||||
fprintf(stderr, "new segment:" );
|
||||
fprintf(stderr, "%d new segment:", recursive++ );
|
||||
seg_print(news);
|
||||
*/
|
||||
|
||||
// recursively start splitting the new segment
|
||||
// starting at our current z-depth
|
||||
tri_seg_intersect(zlist, news, slist_visible);
|
||||
// starting at the next triangle down the z-depth
|
||||
tri_seg_intersect(zlist->next, news, slist_visible);
|
||||
//fprintf(stderr, "%d -----\n", --recursive);
|
||||
|
||||
// continue splitting our current segment
|
||||
continue;
|
||||
@ -1273,42 +1251,48 @@ seg_print(news);
|
||||
if (intersections == 1)
|
||||
{
|
||||
// if there is an intersection, but the segment intercept
|
||||
// is close than the triangle intercept, then no problem.
|
||||
// is closer than the triangle intercept, then no problem.
|
||||
// we do not bother with degenerate cases of intersecting
|
||||
// triangles
|
||||
if (is[0].p[2] <= it[0].p[2])
|
||||
continue;
|
||||
|
||||
// due to floating point issues, one of these might
|
||||
// be closer to the edge. re-check the barycentric
|
||||
// coordinates for "close enough"
|
||||
inside0 = bary[0].p[0] > -EPS && bary[0].p[1] > -EPS && bary[0].p[2] > -EPS;
|
||||
inside1 = bary[1].p[0] > -EPS && bary[1].p[1] > -EPS && bary[1].p[2] > -EPS;
|
||||
|
||||
// segment is behind the triangle, so it needs to be
|
||||
// cut into pieces
|
||||
if (v2_eq(s->p[0].p, is[0].p, 0.1)
|
||||
|| v2_eq(s->p[1].p, is[0].p, 0.1))
|
||||
{
|
||||
// we're touching on one side, ignore it
|
||||
continue;
|
||||
} else
|
||||
if (inside0)
|
||||
{
|
||||
// shorten it on the 0 side
|
||||
s->p[0] = is[0];
|
||||
//fprintf(stderr, "short seg 0: "); seg_print(s);
|
||||
continue;
|
||||
} else
|
||||
if (inside1)
|
||||
{
|
||||
// shorten it on the 1 side
|
||||
s->p[1] = is[0];
|
||||
continue;
|
||||
} else
|
||||
if (v2_eq(s->p[0].p, is[0].p, 0.1))
|
||||
{
|
||||
// the 0 side is on the triangle, don't bother
|
||||
continue;
|
||||
} else
|
||||
if (v2_eq(s->p[1].p, is[0].p, 0.1))
|
||||
{
|
||||
// the 1 side is on the triangle, don't bother
|
||||
//fprintf(stderr, "short seg 1: "); seg_print(s);
|
||||
continue;
|
||||
} else {
|
||||
fprintf(stderr, "uh, both outside but one intersection? %.3f,%.3f\n",
|
||||
fprintf(stderr, "**** uh, both outside but one intersection? %.3f,%.3f\n",
|
||||
is[0].p[0],
|
||||
is[0].p[1]
|
||||
);
|
||||
seg_print(s);
|
||||
tri_print(t);
|
||||
fprintf(stderr, "bary0 %f,%f,%f\n", bary[0].p[0], bary[0].p[1], bary[0].p[2]);
|
||||
fprintf(stderr, "bary1 %f,%f,%f\n", bary[1].p[0], bary[1].p[1], bary[1].p[2]);
|
||||
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 0);
|
||||
continue;
|
||||
}
|
||||
@ -1328,6 +1312,7 @@ if(0) fprintf(stderr, "good: %.0f,%.0f,%.0f-> %.0f,%.0f,%.0f\n",
|
||||
|
||||
s->next = *slist_visible;
|
||||
*slist_visible = s;
|
||||
recursive--;
|
||||
}
|
||||
|
||||
|
||||
@ -1337,13 +1322,6 @@ int main(
|
||||
char ** argv
|
||||
)
|
||||
{
|
||||
v3_t p0 = {{ 0, 0, 0 }};
|
||||
v3_t p1 = {{ 100, 100, 100 }};
|
||||
v3_t p2 = {{ 200, -100, 0 }};
|
||||
v3_t p3 = {{ 0, 100, 200 }};
|
||||
v3_t is, it;
|
||||
hidden_intersect(&p0, &p1, &p2, &p3, &is, &it);
|
||||
|
||||
const size_t max_len = 32 << 20;
|
||||
uint8_t * const buf = calloc(max_len, 1);
|
||||
|
||||
@ -1373,7 +1351,7 @@ int main(
|
||||
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
|
||||
|
||||
float off_x = 500;
|
||||
float off_y = 500;
|
||||
float off_y = 1200;
|
||||
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
|
||||
|
||||
int rejected = 0;
|
||||
@ -1406,6 +1384,8 @@ int main(
|
||||
if (tri->normal.p[2] <= 0)
|
||||
goto reject;
|
||||
|
||||
retained++;
|
||||
|
||||
// it passes the first tests, so insert the triangle
|
||||
// into the list and the three line segments
|
||||
tri_insert(&zlist, tri);
|
||||
@ -1417,9 +1397,6 @@ int main(
|
||||
slist = s;
|
||||
}
|
||||
|
||||
retained++;
|
||||
if( retained > 3)
|
||||
break;
|
||||
|
||||
continue;
|
||||
|
||||
@ -1431,9 +1408,6 @@ reject:
|
||||
if (debug)
|
||||
fprintf(stderr, "Retained %d, rejected %d triangles\n", retained, rejected);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
tri_print(t);
|
||||
|
||||
// we now have a z-sorted list of triangles
|
||||
rejected = 0;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user