231 lines
4.2 KiB
C
231 lines
4.2 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <math.h>
|
|
|
|
#define EPS 0.0001
|
|
|
|
typedef struct
|
|
{
|
|
char header[80];
|
|
uint32_t num_triangles;
|
|
} __attribute__((__packed__))
|
|
stl_header_t;
|
|
|
|
typedef struct
|
|
{
|
|
float p[3];
|
|
} v3_t;
|
|
|
|
typedef struct
|
|
{
|
|
v3_t normal;
|
|
v3_t p[3];
|
|
uint16_t attr;
|
|
} __attribute__((__packed__))
|
|
stl_face_t;
|
|
|
|
|
|
#define MAX_POINTS 24
|
|
|
|
typedef struct
|
|
{
|
|
int n;
|
|
int p[MAX_POINTS];
|
|
} poly_t;
|
|
|
|
|
|
static int
|
|
v3_eq(
|
|
const v3_t * v1,
|
|
const v3_t * v2
|
|
)
|
|
{
|
|
float dx = v1->p[0] - v2->p[0];
|
|
float dy = v1->p[1] - v2->p[1];
|
|
float dz = v1->p[2] - v2->p[2];
|
|
|
|
if (-EPS < dx && dx < EPS
|
|
&& -EPS < dy && dy < EPS
|
|
&& -EPS < dz && dz < EPS)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
edge_eq(
|
|
const stl_face_t * const t0,
|
|
const stl_face_t * const t1,
|
|
int e0,
|
|
int e1
|
|
)
|
|
{
|
|
const v3_t * const v0 = &t0->p[e0];
|
|
const v3_t * const v1 = &t0->p[e1];
|
|
|
|
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[1]))
|
|
return 1;
|
|
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[0]))
|
|
return 1;
|
|
|
|
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[2]))
|
|
return 1;
|
|
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[0]))
|
|
return 1;
|
|
|
|
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[2]))
|
|
return 1;
|
|
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[1]))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
double
|
|
v3_len(
|
|
const v3_t * const v0,
|
|
const v3_t * const v1
|
|
)
|
|
{
|
|
float dx = v0->p[0] - v1->p[0];
|
|
float dy = v0->p[1] - v1->p[1];
|
|
float dz = v0->p[2] - v1->p[2];
|
|
|
|
return sqrt(dx*dx + dy*dy + dz*dz);
|
|
}
|
|
|
|
|
|
/** recursively try to fix up the triangles.
|
|
*
|
|
* returns 0 if this should be unwound, 1 if was successful
|
|
*/
|
|
int
|
|
recurse(
|
|
const stl_face_t * const faces,
|
|
int start,
|
|
const int num_faces,
|
|
int * const used
|
|
)
|
|
{
|
|
static int depth;
|
|
|
|
depth++;
|
|
|
|
const stl_face_t * const t = &faces[start];
|
|
double d0 = v3_len(&t->p[0], &t->p[1]);
|
|
double d1 = v3_len(&t->p[1], &t->p[2]);
|
|
double d2 = v3_len(&t->p[1], &t->p[2]);
|
|
|
|
// flag that we are looking into this one
|
|
used[start] = 1;
|
|
|
|
// start with the first triangle, find the ones that connect
|
|
|
|
// for each edge, find the triangle that matches
|
|
for (int j = 0 ; j < num_faces ; j++)
|
|
{
|
|
if (used[j])
|
|
continue;
|
|
|
|
const stl_face_t * const t2 = &faces[j];
|
|
if (edge_eq(t, t2, 0, 1))
|
|
{
|
|
fprintf(stderr, "%d.0 -> %d\n", start, j);
|
|
recurse(faces, j, num_faces, used);
|
|
}
|
|
if (edge_eq(t, t2, 0, 2))
|
|
{
|
|
fprintf(stderr, "%d.1 -> %d\n", start, j);
|
|
recurse(faces, j, num_faces, used);
|
|
}
|
|
if (edge_eq(t, t2, 1, 2))
|
|
{
|
|
fprintf(stderr, "%d.2 -> %d\n", start, j);
|
|
recurse(faces, j, num_faces, used);
|
|
}
|
|
}
|
|
|
|
// no success
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int main(void)
|
|
{
|
|
const size_t max_len = 1 << 20;
|
|
uint8_t * const buf = calloc(max_len, 1);
|
|
|
|
ssize_t rc = read(0, buf, max_len);
|
|
if (rc == -1)
|
|
return EXIT_FAILURE;
|
|
|
|
const stl_header_t * const hdr = (const void*) buf;
|
|
const stl_face_t * const faces = (const void*)(hdr+1);
|
|
const int num_triangles = hdr->num_triangles;
|
|
|
|
fprintf(stderr, "header: '%s'\n", hdr->header);
|
|
fprintf(stderr, "num: %d\n", num_triangles);
|
|
|
|
int * const used = calloc(num_triangles, sizeof(*used));
|
|
|
|
recurse(faces, 0, num_triangles, used);
|
|
|
|
#if 0
|
|
// worst case -- all separate polygons
|
|
poly_t * const polys = calloc(num_triangles, sizeof(*polys));
|
|
v3_t * const vertices = calloc(num_triangles*3, sizeof(*vertices));
|
|
int num_vertices = 0;
|
|
|
|
for(int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
// see if this matches an existing vertex
|
|
const stl_face_t * const t = &faces[i];
|
|
poly_t * const p = &polys[i];
|
|
p->n = 3;
|
|
p->p[0] = p->p[1] = p->p[2] = -1;
|
|
|
|
for (int j = 0 ; j < num_vertices ; j++)
|
|
{
|
|
const v3_t * const v = &vertices[j];
|
|
if (p->p[0] == -1 && v3_eq(v, &t->p0))
|
|
p->p[1] = j;
|
|
if (p->p[1] == -1 && v3_eq(v, &t->p1))
|
|
p->p[1] = j;
|
|
if (p->p[2] == -1 && v3_eq(v, &t->p2))
|
|
p->p[2] = j;
|
|
|
|
// check if we've found all of them
|
|
if (p->p[0] >= 0 && p->p[1] >= 0 && p->p[2] >= 0)
|
|
break;
|
|
}
|
|
|
|
// create new points if we haven't found matches
|
|
if (p->p[0] < 0)
|
|
{
|
|
p->p[0] = num_vertices;
|
|
vertices[num_vertices++] = t->p0;
|
|
}
|
|
if (p->p[1] < 0)
|
|
{
|
|
p->p[1] = num_vertices;
|
|
vertices[num_vertices++] = t->p1;
|
|
}
|
|
if (p->p[3] < 0)
|
|
{
|
|
p->p[3] = num_vertices;
|
|
vertices[num_vertices++] = t->p2;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "unique vertices: %d\n", num_vertices);
|
|
#endif
|
|
|
|
|
|
return 0;
|
|
}
|