480 lines
8.9 KiB
C
480 lines
8.9 KiB
C
/** \file
|
|
* Unfold an STL file into a set of laser-cutable polygons.
|
|
*
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <math.h>
|
|
#include <err.h>
|
|
#include <assert.h>
|
|
#include "v3.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.1415926535897932384
|
|
#endif
|
|
|
|
typedef struct
|
|
{
|
|
char header[80];
|
|
uint32_t num_triangles;
|
|
} __attribute__((__packed__))
|
|
stl_header_t;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
v3_t normal;
|
|
v3_t p[3];
|
|
uint16_t attr;
|
|
} __attribute__((__packed__))
|
|
stl_face_t;
|
|
|
|
|
|
typedef struct face face_t;
|
|
typedef struct poly poly_t;
|
|
|
|
struct face
|
|
{
|
|
float sides[3];
|
|
face_t * next[3];
|
|
int next_edge[3];
|
|
int coplanar[3];
|
|
int used;
|
|
};
|
|
|
|
// once this triangle has been used, it will be placed
|
|
// in a polygon group and fixed in a position relative to that group
|
|
struct poly
|
|
{
|
|
int start_edge;
|
|
int printed;
|
|
|
|
// local coordinates of the triangle vertices
|
|
float a;
|
|
float x2;
|
|
float y2;
|
|
float rot;
|
|
|
|
// absolute coordintes of the triangle vertices
|
|
float p[3][2];
|
|
|
|
face_t * face;
|
|
poly_t * next[3];
|
|
|
|
poly_t * work_next;
|
|
};
|
|
|
|
|
|
/* Compare two edges in two triangles.
|
|
*
|
|
* note that if the windings are all the same, the edges will
|
|
* compare in the opposite order (for example, the edge from 0 to 1
|
|
* compares to the edge from 2 to 1 in the other triangle).
|
|
*/
|
|
static int
|
|
edge_eq2(
|
|
const stl_face_t * const t0,
|
|
const stl_face_t * const t1,
|
|
int e0,
|
|
int e1
|
|
)
|
|
{
|
|
const v3_t * const v00 = &t0->p[e0];
|
|
const v3_t * const v01 = &t0->p[(e0+1) % 3];
|
|
|
|
const v3_t * const v10 = &t1->p[e1];
|
|
const v3_t * const v11 = &t1->p[(e1+1) % 3];
|
|
|
|
if (v3_eq(v00, v11) && v3_eq(v01, v10))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
svg_line(
|
|
const char * color,
|
|
float * p1,
|
|
float * p2
|
|
)
|
|
{
|
|
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\"/>\n",
|
|
p1[0],
|
|
p1[1],
|
|
p2[0],
|
|
p2[1],
|
|
color
|
|
);
|
|
}
|
|
|
|
|
|
void
|
|
rotate(
|
|
float * p,
|
|
const float * origin,
|
|
float a,
|
|
float x,
|
|
float y
|
|
)
|
|
{
|
|
p[0] = cos(a) * x - sin(a) * y + origin[0];
|
|
p[1] = sin(a) * x + cos(a) * y + origin[1];
|
|
}
|
|
|
|
|
|
/* Rotate and translate a triangle */
|
|
void
|
|
poly_position(
|
|
poly_t * const g,
|
|
const poly_t * const g_src,
|
|
float rot,
|
|
float trans_x,
|
|
float trans_y
|
|
)
|
|
{
|
|
face_t * const f = g->face;
|
|
const int start_edge = g->start_edge;
|
|
|
|
float a = f->sides[(start_edge + 0) % 3];
|
|
float c = f->sides[(start_edge + 1) % 3];
|
|
float b = f->sides[(start_edge + 2) % 3];
|
|
float x2 = (a*a + b*b - c*c) / (2*a);
|
|
float y2 = sqrt(b*b - x2*x2);
|
|
|
|
// translate by trans_x/trans_y in the original ref frame
|
|
// to get the origin point
|
|
float origin[2];
|
|
rotate(origin, g_src->p[0], g_src->rot, trans_x, trans_y);
|
|
|
|
g->rot = g_src->rot + rot;
|
|
g->a = a;
|
|
g->x2 = x2;
|
|
g->y2 = y2;
|
|
|
|
fprintf(stderr, "%p %d %f %f %f %f => %f %f %f\n", f, start_edge, g->rot*180/M_PI, a, b, c, x2, y2, rot);
|
|
rotate(g->p[0], origin, g->rot, 0, 0);
|
|
rotate(g->p[1], origin, g->rot, a, 0);
|
|
rotate(g->p[2], origin, g->rot, x2, y2);
|
|
}
|
|
|
|
|
|
static void
|
|
enqueue(
|
|
poly_t * g,
|
|
poly_t * const new_g
|
|
)
|
|
{
|
|
while (g->work_next)
|
|
g = g->work_next;
|
|
g->work_next = new_g;
|
|
}
|
|
|
|
|
|
/** recursively try to fix up the triangles.
|
|
*
|
|
* returns the maximum number of triangles added
|
|
*/
|
|
int
|
|
poly_build(
|
|
poly_t * const g
|
|
)
|
|
{
|
|
face_t * const f = g->face;
|
|
const int start_edge = g->start_edge;
|
|
f->used = 1;
|
|
|
|
fprintf(stderr, "%p: adding to poly\n", f);
|
|
|
|
for(int pass = 0 ; pass < 2 ; pass++)
|
|
{
|
|
// for each edge, find the triangle that matches
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
const int edge = (i + start_edge) % 3;
|
|
face_t * const f2 = f->next[edge];
|
|
assert(f2 != NULL);
|
|
if (f2->used)
|
|
continue;
|
|
if (pass == 0 && !f->coplanar[edge])
|
|
continue;
|
|
|
|
// create a group that translates and rotates
|
|
// such that it lines up with this edge
|
|
float trans_x, trans_y, rotate;
|
|
if (i == 0)
|
|
{
|
|
trans_x = g->a;
|
|
trans_y = 0;
|
|
rotate = M_PI;
|
|
} else
|
|
if (i == 1)
|
|
{
|
|
trans_x = g->x2;
|
|
trans_y = g->y2;
|
|
rotate = -atan2(g->y2, g->a - g->x2);
|
|
} else
|
|
if (i == 2)
|
|
{
|
|
trans_x = 0;
|
|
trans_y = 0;
|
|
rotate = atan2(g->y2, g->x2);
|
|
} else {
|
|
errx(EXIT_FAILURE, "edge %d invalid?\n", i);
|
|
}
|
|
|
|
// position this one translated and rotated
|
|
poly_t * const g2 = calloc(1, sizeof(*g2));
|
|
g2->face = f2;
|
|
g2->start_edge = f->next_edge[edge];
|
|
|
|
poly_position(
|
|
g2,
|
|
g,
|
|
rotate,
|
|
trans_x,
|
|
trans_y
|
|
);
|
|
|
|
// \todo: CHECK FOR OVERLAP!
|
|
|
|
g->next[i] = g2;
|
|
g2->next[0] = g;
|
|
f2->used = 1;
|
|
|
|
enqueue(g, g2);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
poly_print(
|
|
poly_t * const g
|
|
)
|
|
{
|
|
face_t * const f = g->face;
|
|
const int start_edge = g->start_edge;
|
|
|
|
g->printed = 1;
|
|
|
|
// draw this triangle;
|
|
// if the edge is an outside, which means that the group
|
|
// has no next element, draw a cut line. If there is an
|
|
// adjacent neighbor and it is not coplanar, draw a score line
|
|
printf("<g><!-- %p %d %f %f->%p %f->%p %f->%p -->\n",
|
|
f,
|
|
g->start_edge, g->rot * 180/M_PI,
|
|
f->sides[0],
|
|
f->next[0],
|
|
f->sides[1],
|
|
f->next[1],
|
|
f->sides[2],
|
|
f->next[2]
|
|
);
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
const int edge = (start_edge + i) % 3;
|
|
poly_t * const next = g->next[i];
|
|
|
|
if (!next)
|
|
{
|
|
// draw a cut line
|
|
svg_line("#FF0000", g->p[i], g->p[(i+1) % 3]);
|
|
continue;
|
|
}
|
|
|
|
if (next->printed)
|
|
continue;
|
|
|
|
if (f->coplanar[edge])
|
|
{
|
|
// draw a shadow line since they are coplanar
|
|
svg_line("#F0F0F0", g->p[i], g->p[(i+1) % 3]);
|
|
} else {
|
|
// draw a score line since they are not coplanar
|
|
svg_line("#0000FF", g->p[i], g->p[(i+1) % 3]);
|
|
}
|
|
}
|
|
printf("</g>\n");
|
|
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
poly_t * const next = g->next[i];
|
|
if (!next || next->printed)
|
|
continue;
|
|
|
|
poly_print(next);
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
coplanar_check(
|
|
const stl_face_t * const f1,
|
|
const stl_face_t * const f2
|
|
)
|
|
{
|
|
// find the four distinct points
|
|
v3_t x1 = f1->p[0];
|
|
v3_t x2 = f1->p[1];
|
|
v3_t x3 = f1->p[2];
|
|
v3_t x4;
|
|
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
x4 = f2->p[i];
|
|
if (v3_eq(&x1, &x4))
|
|
continue;
|
|
if (v3_eq(&x2, &x4))
|
|
continue;
|
|
if (v3_eq(&x3, &x4))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
|
|
v3_t dx31 = v3_sub(x3, x1);
|
|
v3_t dx21 = v3_sub(x2, x1);
|
|
v3_t dx43 = v3_sub(x4, x3);
|
|
v3_t cross = v3_cross(dx21, dx43);
|
|
float dot = v3_dot(dx31, cross);
|
|
|
|
int check = -EPS < dot && dot < +EPS;
|
|
//fprintf( stderr, "%p %p %s\n", f1, f2, check ? "yes" : "no");
|
|
return check;
|
|
}
|
|
|
|
|
|
/** Translate a list of STL triangles into a connected graph of faces.
|
|
*
|
|
* If there are any triangles that do not have three connected edges,
|
|
* the first error will be reported and NULL will be returned.
|
|
*/
|
|
face_t *
|
|
stl2faces(
|
|
const stl_face_t * const stl_faces,
|
|
const int num_triangles
|
|
)
|
|
{
|
|
face_t * const faces = calloc(num_triangles, sizeof(*faces));
|
|
|
|
// convert the stl triangles into faces
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_face_t * const stl = &stl_faces[i];
|
|
face_t * const f = &faces[i];
|
|
|
|
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
|
|
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
|
|
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
|
|
fprintf(stderr, "%p %f %f %f\n", f, f->sides[0], f->sides[1], f->sides[2]);
|
|
}
|
|
|
|
// look to see if there is a matching point
|
|
// in the faces that we've already built
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_face_t * const stl = &stl_faces[i];
|
|
face_t * const f = &faces[i];
|
|
|
|
for (int j = 0 ; j < num_triangles ; j++)
|
|
{
|
|
if (i == j)
|
|
continue;
|
|
|
|
const stl_face_t * const stl2 = &stl_faces[j];
|
|
face_t * const f2 = &faces[j];
|
|
|
|
for (int edge = 0 ; edge < 3 ; edge++)
|
|
{
|
|
if (f->next[edge])
|
|
continue;
|
|
|
|
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
|
|
{
|
|
if (f2->next[edge2])
|
|
continue;
|
|
|
|
if (!edge_eq2(stl, stl2, edge, edge2))
|
|
continue;
|
|
|
|
f->next[edge] = f2;
|
|
f->next_edge[edge] = edge2;
|
|
f2->next[edge2] = f;
|
|
f2->next_edge[edge2] = edge;
|
|
|
|
f->coplanar[edge] =
|
|
f2->coplanar[edge2] = coplanar_check(stl, stl2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// all three edges should be matched
|
|
if (f->next[0] && f->next[1] && f->next[2])
|
|
continue;
|
|
fprintf(stderr, "%d missing edges?\n", i);
|
|
free(faces);
|
|
return NULL;
|
|
}
|
|
|
|
return faces;
|
|
}
|
|
|
|
|
|
int main(void)
|
|
{
|
|
const size_t max_len = 1 << 20;
|
|
uint8_t * const buf = calloc(max_len, 1);
|
|
|
|
ssize_t rc = read(0, buf, max_len);
|
|
if (rc == -1)
|
|
return EXIT_FAILURE;
|
|
|
|
const stl_header_t * const hdr = (const void*) buf;
|
|
const stl_face_t * const stl_faces = (const void*)(hdr+1);
|
|
const int num_triangles = hdr->num_triangles;
|
|
|
|
fprintf(stderr, "header: '%s'\n", hdr->header);
|
|
fprintf(stderr, "num: %d\n", num_triangles);
|
|
|
|
face_t * const faces = stl2faces(stl_faces, num_triangles);
|
|
|
|
// we now have a graph that shows the connection between
|
|
// all of the faces and their sizes. start trying to build
|
|
// non-overlapping groups of them
|
|
|
|
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
|
|
poly_t origin = { };
|
|
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
face_t * const f = &faces[i];
|
|
if (f->used)
|
|
continue;
|
|
poly_t g = {
|
|
.face = f,
|
|
.start_edge = 0,
|
|
};
|
|
poly_position(&g, &origin, 0, 0, 0);
|
|
|
|
poly_t * iter = &g;
|
|
while (iter)
|
|
{
|
|
poly_build(iter);
|
|
iter = iter->work_next;
|
|
}
|
|
|
|
printf("<g>\n");
|
|
poly_print(&g);
|
|
printf("</g>\n");
|
|
}
|
|
|
|
printf("</svg>\n");
|
|
|
|
return 0;
|
|
}
|