2017-09-27 03:37:22 +02:00
|
|
|
/** \file
|
|
|
|
* 3D camera equation.
|
|
|
|
*
|
|
|
|
* Given a camera matrix and a XYZ point, returns the 2D coordinate
|
|
|
|
* of the point.
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include "camera.h"
|
|
|
|
|
|
|
|
struct _camera_t
|
|
|
|
{
|
2018-02-27 14:21:49 +01:00
|
|
|
float near;
|
|
|
|
float far;
|
2018-03-03 20:14:06 +01:00
|
|
|
m44_t r;
|
2017-09-27 03:37:22 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
camera_t *
|
|
|
|
camera_new(
|
2017-09-27 04:59:09 +02:00
|
|
|
v3_t eye,
|
2018-02-27 14:21:49 +01:00
|
|
|
v3_t lookat,
|
2018-02-27 19:13:58 +01:00
|
|
|
v3_t up,
|
2018-03-01 04:07:51 +01:00
|
|
|
float fov
|
2017-09-27 03:37:22 +02:00
|
|
|
)
|
|
|
|
{
|
|
|
|
camera_t * c = calloc(1, sizeof(*c));
|
|
|
|
if (!c)
|
|
|
|
return NULL;
|
|
|
|
|
2018-03-01 04:07:51 +01:00
|
|
|
camera_setup(c, eye, lookat, up, fov);
|
2017-09-27 03:37:22 +02:00
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
camera_setup(
|
|
|
|
camera_t * const c,
|
2017-09-27 04:59:09 +02:00
|
|
|
v3_t eye,
|
2018-02-27 14:21:49 +01:00
|
|
|
v3_t lookat,
|
2018-02-27 19:13:58 +01:00
|
|
|
v3_t up,
|
2018-03-01 04:07:51 +01:00
|
|
|
float fov
|
2017-09-27 03:37:22 +02:00
|
|
|
)
|
|
|
|
{
|
2018-02-27 14:21:49 +01:00
|
|
|
// compute the basis for the camera
|
|
|
|
// negative look direction from eye to destination
|
|
|
|
v3_t w = v3_norm(v3_sub(eye, lookat));
|
|
|
|
|
|
|
|
// compute the side axis
|
|
|
|
v3_t u = v3_norm(v3_cross(up, w));
|
|
|
|
|
|
|
|
// and the "up" normal
|
|
|
|
v3_t v = v3_norm(v3_cross(w, u));
|
|
|
|
|
2018-03-03 20:14:06 +01:00
|
|
|
m44_t cam = {{
|
2018-03-01 03:15:06 +01:00
|
|
|
#if 0
|
|
|
|
{ u.p[0], v.p[0], w.p[0], 0 },
|
|
|
|
{ u.p[1], v.p[1], w.p[1], 0 },
|
|
|
|
{ u.p[2], v.p[2], w.p[2], 0 },
|
|
|
|
{ -v3_dot(u,eye), -v3_dot(v,eye), -v3_dot(w,eye), 1 },
|
|
|
|
#else
|
2018-03-01 04:07:51 +01:00
|
|
|
{ u.p[0], u.p[1], u.p[2], -v3_dot(u,eye) },
|
|
|
|
{ v.p[0], v.p[1], v.p[2], -v3_dot(v,eye) },
|
|
|
|
{ w.p[0], w.p[1], w.p[2], -v3_dot(w,eye) },
|
2018-03-01 03:15:06 +01:00
|
|
|
{ 0, 0, 0, 1 },
|
|
|
|
#endif
|
2018-03-03 20:14:06 +01:00
|
|
|
}};
|
2018-02-27 14:21:49 +01:00
|
|
|
|
|
|
|
|
2018-03-01 03:15:06 +01:00
|
|
|
fprintf(stderr, "Camera:\n");
|
2018-02-27 14:21:49 +01:00
|
|
|
for(int i = 0 ; i < 4 ; i++)
|
|
|
|
{
|
|
|
|
for(int j = 0 ; j < 4 ; j++)
|
2018-03-03 20:14:06 +01:00
|
|
|
fprintf(stderr, " %+5.3f", cam.m[i][j]);
|
2018-02-27 14:21:49 +01:00
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// now compute the perspective projection matrix
|
2018-03-03 20:14:06 +01:00
|
|
|
if(0) {
|
2018-02-27 14:21:49 +01:00
|
|
|
float s = 1.0 / tan(fov * M_PI / 180 / 2);
|
2018-03-03 20:14:06 +01:00
|
|
|
c->near = 1;
|
|
|
|
c->far = 2;
|
2018-03-01 03:15:06 +01:00
|
|
|
float f1 = - c->far / (c->far - c->near);
|
2018-02-27 14:21:49 +01:00
|
|
|
float f2 = - c->far * c->near / (c->far - c->near);
|
|
|
|
|
2018-03-03 20:14:06 +01:00
|
|
|
m44_t pers = {{
|
2018-02-27 14:21:49 +01:00
|
|
|
{ s, 0, 0, 0 },
|
|
|
|
{ 0, s, 0, 0 },
|
2018-03-03 20:14:06 +01:00
|
|
|
{ 0, 0, f2, -1 },
|
|
|
|
{ 0, 0, f1, 0 },
|
|
|
|
}};
|
2018-02-27 14:21:49 +01:00
|
|
|
|
2018-03-01 03:15:06 +01:00
|
|
|
fprintf(stderr, "Perspective:\n");
|
|
|
|
for(int i = 0 ; i < 4 ; i++)
|
|
|
|
{
|
|
|
|
for(int j = 0 ; j < 4 ; j++)
|
2018-03-03 20:14:06 +01:00
|
|
|
fprintf(stderr, " %+5.3f", pers.m[i][j]);
|
2018-03-01 03:15:06 +01:00
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
2018-02-27 14:21:49 +01:00
|
|
|
// and apply it to the camera matrix to generate transform
|
2018-03-03 20:14:06 +01:00
|
|
|
m44_mult(&c->r, &cam, &pers);
|
|
|
|
} else {
|
|
|
|
// no perspective
|
|
|
|
m44_t pers = {{
|
|
|
|
{ 1, 0, 0, 0 },
|
|
|
|
{ 0, 1, 0, 0 },
|
|
|
|
{ 0, 0, 1, 0 },
|
|
|
|
{ 0, 0, 0, 1 },
|
|
|
|
}};
|
|
|
|
// and apply it to the camera matrix to generate transform
|
|
|
|
m44_mult(&c->r, &cam, &pers);
|
|
|
|
}
|
2018-03-01 03:15:06 +01:00
|
|
|
|
|
|
|
|
|
|
|
fprintf(stderr, "Cam*Pers\n");
|
2018-02-27 14:21:49 +01:00
|
|
|
for(int i = 0 ; i < 4 ; i++)
|
|
|
|
{
|
|
|
|
for(int j = 0 ; j < 4 ; j++)
|
2018-03-03 20:14:06 +01:00
|
|
|
fprintf(stderr, " %+5.3f", c->r.m[i][j]);
|
2018-02-27 14:21:49 +01:00
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
2018-03-03 20:14:06 +01:00
|
|
|
|
2018-02-27 14:21:49 +01:00
|
|
|
}
|
2017-09-27 03:37:22 +02:00
|
|
|
|
|
|
|
|
|
|
|
/** Transform a XYZ point into a screen point.
|
|
|
|
*
|
|
|
|
* Returns 0 if this is behind us. Perhaps it should do a z buffer?
|
2018-02-27 14:21:49 +01:00
|
|
|
* https://en.wikipedia.org/wiki/3D_projection
|
2017-09-27 03:37:22 +02:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
camera_project(
|
|
|
|
const camera_t * const c,
|
2018-02-27 14:21:49 +01:00
|
|
|
const v3_t * const v_in,
|
2017-09-27 03:37:22 +02:00
|
|
|
v3_t * const v_out
|
|
|
|
)
|
|
|
|
{
|
2018-03-03 20:14:06 +01:00
|
|
|
v4_t v = {{ v_in->p[0], v_in->p[1], v_in->p[2], 1 }};
|
|
|
|
v4_t p = m44_multv(&c->r, &v);
|
2017-09-27 03:37:22 +02:00
|
|
|
|
2018-03-03 20:14:06 +01:00
|
|
|
p.p[2] *= -1;
|
2018-02-27 14:21:49 +01:00
|
|
|
|
2018-03-01 04:07:51 +01:00
|
|
|
// what if p->p[4] == 0?
|
|
|
|
// pz < 0 == The point is behind us; do not display?
|
|
|
|
//if (p[2] < c->near || p[2] > c->far)
|
2018-03-03 20:14:06 +01:00
|
|
|
if (p.p[2] <= 0)
|
2018-03-01 04:07:51 +01:00
|
|
|
return 0;
|
|
|
|
|
2018-03-03 20:14:06 +01:00
|
|
|
// shrink by the distance
|
|
|
|
p.p[0] *= 1000 / p.p[2];
|
|
|
|
p.p[1] *= 1000 / p.p[2];
|
|
|
|
//p[2] /= 1000;
|
2018-02-27 14:21:49 +01:00
|
|
|
|
2017-09-27 03:37:22 +02:00
|
|
|
// Transform to screen coordinate frame,
|
2018-02-27 14:21:49 +01:00
|
|
|
// and return it to the caller
|
2018-03-03 20:14:06 +01:00
|
|
|
v_out->p[0] = p.p[0];
|
|
|
|
v_out->p[1] = p.p[1];
|
|
|
|
v_out->p[2] = p.p[2];
|
|
|
|
|
|
|
|
v3_print(*v_out);
|
2017-09-27 03:37:22 +02:00
|
|
|
|
2018-02-27 14:21:49 +01:00
|
|
|
return 1;
|
2017-09-27 03:37:22 +02:00
|
|
|
}
|