fabaccess-bffh/src/machine.rs

366 lines
11 KiB
Rust
Raw Normal View History

2021-01-26 15:33:50 +01:00
use std::ops::Deref;
use std::iter::FromIterator;
2020-11-30 16:12:52 +01:00
use std::sync::Arc;
use futures_util::lock::Mutex;
use std::path::Path;
2020-11-30 14:08:03 +01:00
use std::task::{Poll, Context};
use std::pin::Pin;
use std::future::Future;
use std::collections::HashMap;
use std::fs;
2020-11-17 13:40:44 +01:00
use serde::{Serialize, Deserialize};
2021-02-15 00:05:03 +01:00
use futures::Stream;
use futures::future::BoxFuture;
2021-02-15 00:05:03 +01:00
use futures::channel::{mpsc, oneshot};
2020-11-17 12:09:45 +01:00
use futures_signals::signal::Signal;
use futures_signals::signal::SignalExt;
use futures_signals::signal::{Mutable, ReadOnlyMutable};
2020-11-17 12:09:45 +01:00
2020-11-30 14:08:03 +01:00
use crate::error::{Result, Error};
2020-11-17 12:09:45 +01:00
2021-09-30 10:07:42 +02:00
use crate::db::access::{AccessControl, PrivilegesBuf, PermissionBuf};
use crate::db::machine::{MachineIdentifier, MachineState, Status};
2021-09-30 10:07:42 +02:00
use crate::db::user::{User, UserData, UserId};
2020-11-17 12:09:45 +01:00
use crate::network::MachineMap;
2021-09-09 21:50:11 +02:00
use crate::space;
pub struct Machines {
machines: Vec<Machine>
}
2020-11-30 16:12:52 +01:00
#[derive(Debug, Clone)]
pub struct Index {
inner: HashMap<String, Machine>,
}
impl Index {
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
pub fn insert(&mut self, key: String, value: Machine) -> Option<Machine> {
self.inner.insert(key, value)
}
pub fn get(&mut self, key: &String) -> Option<Machine> {
self.inner.get(key).map(|m| m.clone())
}
}
2021-09-09 21:50:11 +02:00
// Access data of one machine efficiently, using getters/setters for data stored in LMDB backed
// memory
2020-11-30 16:12:52 +01:00
#[derive(Debug, Clone)]
pub struct Machine {
2021-09-09 21:50:11 +02:00
pub id: uuid::Uuid,
2021-09-18 17:01:35 +02:00
pub desc: MachineDescription,
2021-09-09 21:50:11 +02:00
inner: Arc<Mutex<Inner>>,
2020-11-30 16:12:52 +01:00
}
impl Machine {
2021-09-21 07:48:19 +02:00
pub fn new(inner: Inner, desc: MachineDescription, ) -> Self {
2021-09-09 21:50:11 +02:00
Self {
id: uuid::Uuid::default(),
inner: Arc::new(Mutex::new(inner)),
2021-09-18 17:01:35 +02:00
desc,
2021-09-09 21:50:11 +02:00
}
2020-11-30 16:12:52 +01:00
}
pub fn construct
( id: MachineIdentifier
, desc: MachineDescription
, state: MachineState
) -> Machine
{
2021-09-21 07:48:19 +02:00
Self::new(Inner::new(id, state), desc)
2020-12-02 16:20:50 +01:00
}
2020-12-07 12:27:53 +01:00
2021-09-30 10:07:42 +02:00
fn match_perm(&self, status: &Status) -> Option<&PermissionBuf> {
let p = self.desc.privs;
match status {
// If you were allowed to use it you're allowed to give it back
Status::Free
| Status::ToCheck(_)
=> None,
Status::Blocked(_)
| Status::Disabled
| Status::Reserved(_)
=> Some(&p.manage),
Status::InUse(_) => Some(&p.write),
}
}
pub fn request_state_change(&self, new_state: MachineState, access: AccessControl, user: &User)
-> BoxFuture<'static, Result<()>>
{
let this = self.clone();
let perm = self.match_perm(&new_state.state);
let grant = perm.map(|p| access.check(&user.data, p).unwrap_or(false));
let uid = user.id.clone();
// is it a return
let is_ret = new_state.state == Status::Free;
// is it a (normal) write /the user is allowed to do/?
let is_wri = new_state.state == Status::InUse(Some(uid))
&& access.check(&user.data, self.desc.privs.write).unwrap_or(false);
let f = async move {
let mut guard = this.inner.lock().await;
// either e.g. InUse(<myself>) => Free or I'm allowed to overwrite
if (is_ret && guard.is_self(uid))
|| (is_wri && guard.is_free())
|| grant.unwrap_or(false)
{
guard.do_state_change(new_state);
}
return Ok(())
};
Box::pin(f)
}
2021-09-18 17:01:35 +02:00
pub fn do_state_change(&self, new_state: MachineState)
2021-09-21 07:48:19 +02:00
-> BoxFuture<'static, Result<()>>
2021-09-18 17:01:35 +02:00
{
let this = self.clone();
let f = async move {
let mut guard = this.inner.lock().await;
guard.do_state_change(new_state);
2021-09-21 07:48:19 +02:00
return Ok(())
2021-09-18 17:01:35 +02:00
};
Box::pin(f)
}
pub async fn get_status(&self) -> Status {
let guard = self.inner.lock().await;
guard.state.get_cloned().state
}
2020-12-07 12:27:53 +01:00
pub fn signal(&self) -> impl Signal<Item=MachineState> {
let guard = self.inner.try_lock().unwrap();
2020-12-07 12:27:53 +01:00
guard.signal()
}
2021-09-18 17:01:35 +02:00
pub fn get_inner(&self) -> Arc<Mutex<Inner>> {
self.inner.clone()
}
2020-11-30 16:12:52 +01:00
}
impl Deref for Machine {
type Target = Mutex<Inner>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
2021-02-15 00:05:03 +01:00
2020-11-17 12:09:45 +01:00
#[derive(Debug)]
/// Internal machine representation
///
/// A machine connects an event from a sensor to an actor activating/deactivating a real-world
/// machine, checking that the user who wants the machine (de)activated has the required
/// permissions.
2021-09-30 10:07:42 +02:00
///
/// Machines have a rather complex state machine since they have to be eventually consistent and
/// can fail at any point in time (e.g. because power cuts out suddenly, a different task on this
/// thread panics, some loaded code produces a segfault, ...)
2020-11-30 16:12:52 +01:00
pub struct Inner {
/// Globally unique machine readable identifier
2020-11-20 15:43:03 +01:00
pub id: MachineIdentifier,
2020-11-17 12:09:45 +01:00
/// The state of the machine as bffh thinks the machine *should* be in.
///
/// This is a Signal generator. Subscribers to this signal will be notified of changes. In the
/// case of an actor it should then make sure that the real world matches up with the set state
state: Mutable<MachineState>,
2020-11-30 14:08:03 +01:00
reset: Option<MachineState>,
2020-11-17 12:09:45 +01:00
}
2020-11-30 16:12:52 +01:00
impl Inner {
pub fn new ( id: MachineIdentifier
, state: MachineState
) -> Inner
{
2020-11-30 16:12:52 +01:00
Inner {
2021-09-18 17:01:35 +02:00
id,
2020-11-30 14:08:03 +01:00
state: Mutable::new(state),
reset: None,
2020-11-17 12:09:45 +01:00
}
}
/// Generate a signal from the internal state.
///
/// A signal is a lossy stream of state changes. Lossy in that if changes happen in quick
/// succession intermediary values may be lost. But this isn't really relevant in this case
/// since the only relevant state is the latest one.
pub fn signal(&self) -> impl Signal<Item=MachineState> {
// dedupe ensures that if state is changed but only changes to the value it had beforehand
// (could for example happen if the machine changes current user but stays activated) no
// update is sent.
Box::pin(self.state.signal_cloned().dedupe_cloned())
}
2021-02-15 00:05:03 +01:00
pub fn do_state_change(&mut self, new_state: MachineState) {
2020-12-01 08:39:34 +01:00
let old_state = self.state.replace(new_state);
self.reset.replace(old_state);
2020-11-17 12:09:45 +01:00
}
pub fn read_state(&self) -> ReadOnlyMutable<MachineState> {
self.state.read_only()
}
2020-11-30 14:08:03 +01:00
pub fn get_signal(&self) -> impl Signal {
self.state.signal_cloned()
2020-11-30 14:08:03 +01:00
}
pub fn reset_state(&mut self) {
if let Some(state) = self.reset.take() {
self.state.replace(state);
}
}
2021-09-30 10:07:42 +02:00
pub fn is_self(&mut self, uid: UserId) -> bool {
match self.read_state().get_cloned().state {
Status::InUse(u) if u == uid => true,
_ => false,
}
}
pub fn is_free(&mut self) -> bool {
match self.read_state().get_cloned().state {
Status::Free => true,
_ => false,
}
}
2020-11-30 14:08:03 +01:00
}
2021-02-15 00:05:03 +01:00
//pub type ReturnToken = futures::channel::oneshot::Sender<()>;
pub struct ReturnToken {
2021-02-22 17:25:04 +01:00
f: Option<BoxFuture<'static, ()>>,
2021-02-15 00:05:03 +01:00
}
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
impl ReturnToken {
pub fn new(inner: Arc<Mutex<Inner>>) -> Self {
2021-02-22 17:25:04 +01:00
let f = async move {
let mut guard = inner.lock().await;
guard.reset_state();
};
Self { f: Some(Box::pin(f)) }
2021-02-15 00:05:03 +01:00
}
}
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
impl Future for ReturnToken {
2021-02-22 17:25:04 +01:00
type Output = (); // FIXME: This should probably be a Result<(), Error>
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let mut this = &mut *self;
2020-11-30 14:08:03 +01:00
2021-02-22 17:25:04 +01:00
match this.f.as_mut().map(|f| Future::poll(Pin::new(f), cx)) {
None => Poll::Ready(()), // TODO: Is it saner to return Pending here? This can only happen after the future completed
Some(Poll::Pending) => Poll::Pending,
Some(Poll::Ready(())) => {
let _ = this.f.take(); // Remove the future to not poll after completion
Poll::Ready(())
}
}
2020-11-30 14:08:03 +01:00
}
2020-11-17 12:09:45 +01:00
}
2020-11-17 13:40:44 +01:00
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
2020-11-17 13:40:44 +01:00
/// A description of a machine
///
/// This is the struct that a machine is serialized to/from.
/// Combining this with the actual state of the system will return a machine
pub struct MachineDescription {
/// The name of the machine. Doesn't need to be unique but is what humans will be presented.
2020-11-20 15:43:03 +01:00
pub name: String,
2020-11-17 13:40:44 +01:00
/// An optional description of the Machine.
2020-11-20 15:43:03 +01:00
pub description: Option<String>,
2020-11-17 13:40:44 +01:00
/// The permission required
#[serde(flatten)]
2021-09-30 10:07:42 +02:00
pub privs: PrivilegesBuf,
2020-11-17 13:40:44 +01:00
}
impl MachineDescription {
2020-11-20 13:06:55 +01:00
pub fn load_file<P: AsRef<Path>>(path: P) -> Result<HashMap<MachineIdentifier, MachineDescription>> {
let content = fs::read(path)?;
Ok(toml::from_slice(&content[..])?)
}
}
2021-09-21 07:48:19 +02:00
pub fn load(config: &crate::config::Config)
-> Result<MachineMap>
{
2020-12-12 13:58:04 +01:00
let mut map = config.machines.clone();
2020-12-07 12:27:53 +01:00
let it = map.drain()
2020-12-07 12:27:53 +01:00
.map(|(k,v)| {
// TODO: Read state from the state db
2021-09-21 07:48:19 +02:00
(v.name.clone(), Machine::construct(k, v, MachineState::new()))
});
2021-02-15 00:05:03 +01:00
Ok(HashMap::from_iter(it))
2020-12-01 09:44:18 +01:00
}
2020-12-01 16:06:39 +01:00
#[cfg(test_DISABLED)]
mod tests {
use super::*;
use std::iter::FromIterator;
use crate::db::access::{PermissionBuf, PrivilegesBuf};
#[test]
fn load_examples_descriptions_test() {
2020-11-19 15:10:42 +01:00
let mut machines = MachineDescription::load_file("examples/machines.toml")
.expect("Couldn't load the example machine defs. Does `examples/machines.toml` exist?");
2020-11-19 15:10:42 +01:00
let expected =
vec![
(Uuid::parse_str("e5408099-d3e5-440b-a92b-3aabf7683d6b").unwrap(),
2020-11-19 15:10:42 +01:00
MachineDescription {
name: "Somemachine".to_string(),
description: None,
privs: PrivilegesBuf {
disclose: PermissionBuf::from_string("lab.some.disclose".to_string()),
read: PermissionBuf::from_string("lab.some.read".to_string()),
write: PermissionBuf::from_string("lab.some.write".to_string()),
manage: PermissionBuf::from_string("lab.some.admin".to_string()),
},
}),
(Uuid::parse_str("eaabebae-34d1-4a3a-912a-967b495d3d6e").unwrap(),
2020-11-19 15:10:42 +01:00
MachineDescription {
name: "Testmachine".to_string(),
description: Some("An optional description".to_string()),
privs: PrivilegesBuf {
disclose: PermissionBuf::from_string("lab.test.read".to_string()),
read: PermissionBuf::from_string("lab.test.read".to_string()),
write: PermissionBuf::from_string("lab.test.write".to_string()),
manage: PermissionBuf::from_string("lab.test.admin".to_string()),
},
}),
];
for (id, machine) in expected.into_iter() {
assert_eq!(machines.remove(&id).unwrap(), machine);
}
2020-11-19 15:10:42 +01:00
assert!(machines.is_empty());
}
}