fabaccess-bffh/src/machine.rs

359 lines
11 KiB
Rust
Raw Normal View History

2021-01-26 15:33:50 +01:00
use std::ops::Deref;
use std::iter::FromIterator;
2020-11-30 16:12:52 +01:00
use std::sync::Arc;
use futures_util::lock::Mutex;
use std::path::Path;
2020-11-30 14:08:03 +01:00
use std::task::{Poll, Context};
use std::pin::Pin;
use std::future::Future;
use std::collections::HashMap;
use std::fs;
2020-11-17 13:40:44 +01:00
use serde::{Serialize, Deserialize};
2021-02-15 00:05:03 +01:00
use futures::Stream;
use futures::future::BoxFuture;
2021-02-15 00:05:03 +01:00
use futures::channel::{mpsc, oneshot};
2020-11-17 12:09:45 +01:00
use futures_signals::signal::Signal;
use futures_signals::signal::SignalExt;
use futures_signals::signal::{Mutable, ReadOnlyMutable};
2020-11-17 12:09:45 +01:00
2020-11-30 14:08:03 +01:00
use crate::error::{Result, Error};
2020-11-17 12:09:45 +01:00
use crate::db::access;
use crate::db::machine::{MachineIdentifier, MachineState, Status};
use crate::db::user::{User, UserData};
2020-11-17 12:09:45 +01:00
use crate::network::MachineMap;
2021-09-09 21:50:11 +02:00
use crate::space;
// Registry of all machines configured.
// TODO:
// - Serialize machines into config
// - Deserialize machines from config
// - Index machines on deserialization to we can look them up efficiently
// - Maybe store that index too
// - Iterate over all or a subset of machines efficiently
pub struct Machines {
machines: Vec<Machine>
}
impl Machines {
/// Load machines from the config, looking up and linking the database entries as necessary
pub fn load() -> Self {
unimplemented!()
}
pub fn lookup(id: String) -> Option<Machine> {
unimplemented!()
}
}
2020-11-30 16:12:52 +01:00
#[derive(Debug, Clone)]
pub struct Index {
inner: HashMap<String, Machine>,
}
impl Index {
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
pub fn insert(&mut self, key: String, value: Machine) -> Option<Machine> {
self.inner.insert(key, value)
}
pub fn get(&mut self, key: &String) -> Option<Machine> {
self.inner.get(key).map(|m| m.clone())
}
}
2021-09-09 21:50:11 +02:00
// Access data of one machine efficiently, using getters/setters for data stored in LMDB backed
// memory
2020-11-30 16:12:52 +01:00
#[derive(Debug, Clone)]
pub struct Machine {
2021-09-09 21:50:11 +02:00
pub id: uuid::Uuid,
pub name: String,
pub description: String,
inner: Arc<Mutex<Inner>>,
access: Arc<access::AccessControl>,
2020-11-30 16:12:52 +01:00
}
impl Machine {
pub fn new(inner: Inner, access: Arc<access::AccessControl>) -> Self {
2021-09-09 21:50:11 +02:00
Self {
id: uuid::Uuid::default(),
name: "".to_string(),
description: "".to_string(),
inner: Arc::new(Mutex::new(inner)),
access: access,
}
2020-11-30 16:12:52 +01:00
}
pub fn construct
( id: MachineIdentifier
, desc: MachineDescription
, state: MachineState
, access: Arc<access::AccessControl>
2020-11-30 16:12:52 +01:00
) -> Machine
{
Self::new(Inner::new(id, desc, state), access)
2020-12-01 08:39:34 +01:00
}
pub fn from_file<P: AsRef<Path>>(path: P, access: Arc<access::AccessControl>)
-> Result<Vec<Machine>>
{
2020-12-01 10:21:39 +01:00
let mut map: HashMap<MachineIdentifier, MachineDescription> = MachineDescription::load_file(path)?;
2020-12-01 09:44:18 +01:00
Ok(map.drain().map(|(id, desc)| {
Self::construct(id, desc, MachineState::new(), access.clone())
2020-12-01 09:44:18 +01:00
}).collect())
2020-11-30 16:12:52 +01:00
}
2020-12-02 16:20:50 +01:00
/// Requests to use a machine. Returns a return token if successful.
///
/// This will update the internal state of the machine, notifying connected actors, if any.
/// The return token is a channel that considers the machine 'returned' if anything is sent
/// along it or if the sending end gets dropped. Anybody who holds this token needs to check if
/// the receiving end was canceled which indicates that the machine has been taken off their
/// hands.
2020-12-02 16:20:50 +01:00
pub fn request_state_change(&self, who: Option<&User>, new_state: MachineState)
-> BoxFuture<'static, Result<ReturnToken>>
2020-12-02 16:20:50 +01:00
{
let this = self.clone();
let udata: Option<UserData> = who.map(|u| u.data.clone());
let f = async move {
if let Some(udata) = udata {
let mut guard = this.inner.try_lock().unwrap();
if this.access.check(&udata, &guard.desc.privs.write).await? {
2021-02-22 17:25:04 +01:00
guard.do_state_change(new_state);
return Ok(ReturnToken::new(this.inner.clone()))
}
} else {
if new_state == MachineState::free() {
let mut guard = this.inner.try_lock().unwrap();
2021-02-15 00:05:03 +01:00
guard.do_state_change(new_state);
2021-02-22 17:25:04 +01:00
return Ok(ReturnToken::new(this.inner.clone()));
}
}
return Err(Error::Denied);
};
Box::pin(f)
2020-12-02 16:20:50 +01:00
}
2020-12-07 12:27:53 +01:00
pub fn create_token(&self) -> ReturnToken {
ReturnToken::new(self.inner.clone())
}
pub async fn get_status(&self) -> Status {
let guard = self.inner.lock().await;
guard.state.get_cloned().state
}
2020-12-07 12:27:53 +01:00
pub fn signal(&self) -> impl Signal<Item=MachineState> {
let guard = self.inner.try_lock().unwrap();
2020-12-07 12:27:53 +01:00
guard.signal()
}
2020-11-30 16:12:52 +01:00
}
impl Deref for Machine {
type Target = Mutex<Inner>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
2021-02-15 00:05:03 +01:00
2020-11-17 12:09:45 +01:00
#[derive(Debug)]
/// Internal machine representation
///
/// A machine connects an event from a sensor to an actor activating/deactivating a real-world
/// machine, checking that the user who wants the machine (de)activated has the required
/// permissions.
2020-11-30 16:12:52 +01:00
pub struct Inner {
/// Globally unique machine readable identifier
2020-11-20 15:43:03 +01:00
pub id: MachineIdentifier,
2020-11-17 13:40:44 +01:00
/// Descriptor of the machine
2020-11-20 15:43:03 +01:00
pub desc: MachineDescription,
2020-11-17 12:09:45 +01:00
/// The state of the machine as bffh thinks the machine *should* be in.
///
/// This is a Signal generator. Subscribers to this signal will be notified of changes. In the
/// case of an actor it should then make sure that the real world matches up with the set state
state: Mutable<MachineState>,
2020-11-30 14:08:03 +01:00
reset: Option<MachineState>,
2020-11-17 12:09:45 +01:00
}
2020-11-30 16:12:52 +01:00
impl Inner {
pub fn new ( id: MachineIdentifier
, desc: MachineDescription
, state: MachineState
) -> Inner
{
2020-11-30 16:12:52 +01:00
Inner {
id: id,
2020-11-17 13:40:44 +01:00
desc: desc,
2020-11-30 14:08:03 +01:00
state: Mutable::new(state),
reset: None,
2020-11-17 12:09:45 +01:00
}
}
/// Generate a signal from the internal state.
///
/// A signal is a lossy stream of state changes. Lossy in that if changes happen in quick
/// succession intermediary values may be lost. But this isn't really relevant in this case
/// since the only relevant state is the latest one.
pub fn signal(&self) -> impl Signal<Item=MachineState> {
// dedupe ensures that if state is changed but only changes to the value it had beforehand
// (could for example happen if the machine changes current user but stays activated) no
// update is sent.
Box::pin(self.state.signal_cloned().dedupe_cloned())
}
2021-02-15 00:05:03 +01:00
pub fn do_state_change(&mut self, new_state: MachineState) {
2020-12-01 08:39:34 +01:00
let old_state = self.state.replace(new_state);
self.reset.replace(old_state);
2020-11-17 12:09:45 +01:00
}
pub fn read_state(&self) -> ReadOnlyMutable<MachineState> {
self.state.read_only()
}
2020-11-30 14:08:03 +01:00
pub fn get_signal(&self) -> impl Signal {
self.state.signal_cloned()
2020-11-30 14:08:03 +01:00
}
pub fn reset_state(&mut self) {
if let Some(state) = self.reset.take() {
self.state.replace(state);
}
}
}
2021-02-15 00:05:03 +01:00
//pub type ReturnToken = futures::channel::oneshot::Sender<()>;
pub struct ReturnToken {
2021-02-22 17:25:04 +01:00
f: Option<BoxFuture<'static, ()>>,
2021-02-15 00:05:03 +01:00
}
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
impl ReturnToken {
pub fn new(inner: Arc<Mutex<Inner>>) -> Self {
2021-02-22 17:25:04 +01:00
let f = async move {
let mut guard = inner.lock().await;
guard.reset_state();
};
Self { f: Some(Box::pin(f)) }
2021-02-15 00:05:03 +01:00
}
}
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
impl Future for ReturnToken {
2021-02-22 17:25:04 +01:00
type Output = (); // FIXME: This should probably be a Result<(), Error>
2020-11-30 14:08:03 +01:00
2021-02-15 00:05:03 +01:00
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let mut this = &mut *self;
2020-11-30 14:08:03 +01:00
2021-02-22 17:25:04 +01:00
match this.f.as_mut().map(|f| Future::poll(Pin::new(f), cx)) {
None => Poll::Ready(()), // TODO: Is it saner to return Pending here? This can only happen after the future completed
Some(Poll::Pending) => Poll::Pending,
Some(Poll::Ready(())) => {
let _ = this.f.take(); // Remove the future to not poll after completion
Poll::Ready(())
}
}
2020-11-30 14:08:03 +01:00
}
2020-11-17 12:09:45 +01:00
}
2020-11-17 13:40:44 +01:00
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
2020-11-17 13:40:44 +01:00
/// A description of a machine
///
/// This is the struct that a machine is serialized to/from.
/// Combining this with the actual state of the system will return a machine
pub struct MachineDescription {
/// The name of the machine. Doesn't need to be unique but is what humans will be presented.
2020-11-20 15:43:03 +01:00
pub name: String,
2020-11-17 13:40:44 +01:00
/// An optional description of the Machine.
2020-11-20 15:43:03 +01:00
pub description: Option<String>,
2020-11-17 13:40:44 +01:00
/// The permission required
#[serde(flatten)]
2020-12-14 12:39:01 +01:00
pub privs: access::PrivilegesBuf,
2020-11-17 13:40:44 +01:00
}
impl MachineDescription {
2020-11-20 13:06:55 +01:00
pub fn load_file<P: AsRef<Path>>(path: P) -> Result<HashMap<MachineIdentifier, MachineDescription>> {
let content = fs::read(path)?;
Ok(toml::from_slice(&content[..])?)
}
}
pub fn load(config: &crate::config::Config, access: Arc<access::AccessControl>)
-> Result<MachineMap>
{
2020-12-12 13:58:04 +01:00
let mut map = config.machines.clone();
2020-12-07 12:27:53 +01:00
let it = map.drain()
2020-12-07 12:27:53 +01:00
.map(|(k,v)| {
// TODO: Read state from the state db
(v.name.clone(), Machine::construct(k, v, MachineState::new(), access.clone()))
});
2021-02-15 00:05:03 +01:00
Ok(HashMap::from_iter(it))
2020-12-01 09:44:18 +01:00
}
2020-12-01 16:06:39 +01:00
#[cfg(test_DISABLED)]
mod tests {
use super::*;
use std::iter::FromIterator;
use crate::db::access::{PermissionBuf, PrivilegesBuf};
#[test]
fn load_examples_descriptions_test() {
2020-11-19 15:10:42 +01:00
let mut machines = MachineDescription::load_file("examples/machines.toml")
.expect("Couldn't load the example machine defs. Does `examples/machines.toml` exist?");
2020-11-19 15:10:42 +01:00
let expected =
vec![
(Uuid::parse_str("e5408099-d3e5-440b-a92b-3aabf7683d6b").unwrap(),
2020-11-19 15:10:42 +01:00
MachineDescription {
name: "Somemachine".to_string(),
description: None,
privs: PrivilegesBuf {
disclose: PermissionBuf::from_string("lab.some.disclose".to_string()),
read: PermissionBuf::from_string("lab.some.read".to_string()),
write: PermissionBuf::from_string("lab.some.write".to_string()),
manage: PermissionBuf::from_string("lab.some.admin".to_string()),
},
}),
(Uuid::parse_str("eaabebae-34d1-4a3a-912a-967b495d3d6e").unwrap(),
2020-11-19 15:10:42 +01:00
MachineDescription {
name: "Testmachine".to_string(),
description: Some("An optional description".to_string()),
privs: PrivilegesBuf {
disclose: PermissionBuf::from_string("lab.test.read".to_string()),
read: PermissionBuf::from_string("lab.test.read".to_string()),
write: PermissionBuf::from_string("lab.test.write".to_string()),
manage: PermissionBuf::from_string("lab.test.admin".to_string()),
},
}),
];
for (id, machine) in expected.into_iter() {
assert_eq!(machines.remove(&id).unwrap(), machine);
}
2020-11-19 15:10:42 +01:00
assert!(machines.is_empty());
}
}