papercraft/unfold.c

697 lines
13 KiB
C
Raw Normal View History

2014-12-14 17:49:55 +01:00
/** \file
* Unfold an STL file into a set of laser-cutable polygons.
*
*/
2014-12-12 02:29:09 +01:00
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
2014-12-12 03:24:46 +01:00
#include <math.h>
2014-12-14 23:42:18 +01:00
#include <err.h>
2014-12-15 04:18:34 +01:00
#include <assert.h>
#include "v3.h"
2014-12-12 02:29:09 +01:00
2014-12-14 18:21:18 +01:00
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
2014-12-12 02:29:09 +01:00
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
v3_t normal;
2014-12-12 03:24:46 +01:00
v3_t p[3];
uint16_t attr;
2014-12-12 02:29:09 +01:00
} __attribute__((__packed__))
stl_face_t;
2014-12-14 17:49:55 +01:00
typedef struct face face_t;
2014-12-15 04:18:34 +01:00
typedef struct poly poly_t;
2014-12-12 02:29:09 +01:00
2014-12-14 17:49:55 +01:00
struct face
2014-12-12 02:29:09 +01:00
{
2014-12-14 17:49:55 +01:00
float sides[3];
face_t * next[3];
int next_edge[3];
int coplanar[3];
int used;
};
2014-12-12 02:29:09 +01:00
2014-12-15 04:18:34 +01:00
// once this triangle has been used, it will be placed
// in a polygon group and fixed in a position relative to that group
struct poly
2014-12-12 03:24:46 +01:00
{
2014-12-15 04:18:34 +01:00
int start_edge;
int printed;
2014-12-12 03:24:46 +01:00
2014-12-15 04:18:34 +01:00
// local coordinates of the triangle vertices
float a;
float x2;
float y2;
float rot;
2014-12-12 03:24:46 +01:00
2014-12-15 04:18:34 +01:00
// absolute coordintes of the triangle vertices
float p[3][2];
2014-12-12 03:24:46 +01:00
2014-12-15 04:18:34 +01:00
face_t * face;
poly_t * next[3];
poly_t * work_next;
2014-12-15 04:18:34 +01:00
};
2014-12-12 03:24:46 +01:00
2014-12-14 17:49:55 +01:00
/* Compare two edges in two triangles.
*
* note that if the windings are all the same, the edges will
* compare in the opposite order (for example, the edge from 0 to 1
* compares to the edge from 2 to 1 in the other triangle).
*/
static int
edge_eq2(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v00 = &t0->p[e0];
const v3_t * const v01 = &t0->p[(e0+1) % 3];
const v3_t * const v10 = &t1->p[e1];
const v3_t * const v11 = &t1->p[(e1+1) % 3];
if (v3_eq(v00, v11) && v3_eq(v01, v10))
return 1;
return 0;
}
2014-12-15 04:18:34 +01:00
void
svg_line(
const char * color,
float * p1,
float * p2
2014-12-12 03:24:46 +01:00
)
{
2014-12-20 22:22:55 +01:00
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\" stroke-width=\"0.1px\"/>\n",
2014-12-15 04:18:34 +01:00
p1[0],
p1[1],
p2[0],
p2[1],
color
);
2014-12-12 03:24:46 +01:00
}
2014-12-14 19:36:42 +01:00
void
2014-12-15 04:18:34 +01:00
rotate(
float * p,
const float * origin,
2014-12-15 04:18:34 +01:00
float a,
float x,
float y
2014-12-14 19:36:42 +01:00
)
{
p[0] = cos(a) * x - sin(a) * y + origin[0];
p[1] = sin(a) * x + cos(a) * y + origin[1];
2014-12-14 19:36:42 +01:00
}
2014-12-15 04:18:34 +01:00
/* Rotate and translate a triangle */
void
poly_position(
poly_t * const g,
const poly_t * const g_src,
float rot,
2014-12-15 04:18:34 +01:00
float trans_x,
float trans_y
2014-12-12 03:24:46 +01:00
)
{
2014-12-15 04:18:34 +01:00
face_t * const f = g->face;
const int start_edge = g->start_edge;
2014-12-12 03:24:46 +01:00
2014-12-14 18:21:18 +01:00
float a = f->sides[(start_edge + 0) % 3];
float c = f->sides[(start_edge + 1) % 3];
float b = f->sides[(start_edge + 2) % 3];
float x2 = (a*a + b*b - c*c) / (2*a);
float y2 = sqrt(b*b - x2*x2);
// translate by trans_x/trans_y in the original ref frame
// to get the origin point
float origin[2];
rotate(origin, g_src->p[0], g_src->rot, trans_x, trans_y);
g->rot = g_src->rot + rot;
2014-12-15 04:18:34 +01:00
g->a = a;
g->x2 = x2;
g->y2 = y2;
fprintf(stderr, "%p %d %f %f %f %f => %f %f %f\n", f, start_edge, g->rot*180/M_PI, a, b, c, x2, y2, rot);
rotate(g->p[0], origin, g->rot, 0, 0);
rotate(g->p[1], origin, g->rot, a, 0);
rotate(g->p[2], origin, g->rot, x2, y2);
2014-12-15 04:18:34 +01:00
}
2014-12-14 19:36:42 +01:00
2014-12-15 04:18:34 +01:00
static void
enqueue(
poly_t * g,
poly_t * const new_g,
int at_head
)
{
if (at_head)
{
new_g->work_next = g->work_next;
g->work_next = new_g;
return;
}
// go to the end of the line
while (g->work_next)
g = g->work_next;
g->work_next = new_g;
}
2014-12-20 22:22:55 +01:00
static poly_t * poly_root;
2014-12-31 13:07:01 +01:00
static float poly_min[2], poly_max[2];
2014-12-20 22:22:55 +01:00
static inline int
v2_eq(
const float p0[],
const float p1[]
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
// are the points within epsilon of each other?
if (-EPS < dx && dx < EPS
&& -EPS < dy && dy < EPS)
return 1;
// nope, not equal
return 0;
}
// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines
// intersect the intersection point may be stored in the floats i_x and i_y.
int
get_line_intersection(
float p0_x,
float p0_y,
float p1_x,
float p1_y,
float p2_x,
float p2_y,
float p3_x,
float p3_y,
float *i_x,
float *i_y
)
{
float s1_x = p1_x - p0_x;
float s1_y = p1_y - p0_y;
float s2_x = p3_x - p2_x;
float s2_y = p3_y - p2_y;
float s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y))
/ (-s2_x * s1_y + s1_x * s2_y);
float t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x))
/ (-s2_x * s1_y + s1_x * s2_y);
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
{
fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
p0_x, p0_y,
p1_x, p1_y,
p2_x, p2_y,
p3_x, p3_y,
s,
t
);
// Collision detected
if (i_x != NULL)
*i_x = p0_x + (t * s1_x);
if (i_y != NULL)
*i_y = p0_y + (t * s1_y);
return 1;
}
return 0; // No collision
}
int
intersect(
const float p00[],
const float p01[],
const float p10[],
const float p11[]
)
{
// special case; if this is the same line, it does not intersect
if (v2_eq(p00, p10) && v2_eq(p01, p11))
return 0;
if (v2_eq(p01, p10) && v2_eq(p00, p11))
return 0;
return get_line_intersection(
p00[0],
p00[1],
p01[0],
p01[1],
p10[0],
p10[1],
p11[0],
p11[1],
NULL,
NULL
);
}
/** Check to see if two triangles overlap */
int
overlap_poly(
const poly_t * const g1,
const poly_t * const g2
)
{
if (intersect(g1->p[0], g1->p[1], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[0], g1->p[1], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[0], g1->p[1], g2->p[2], g2->p[0]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[1], g1->p[2], g2->p[2], g2->p[0]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[0], g2->p[1]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[1], g2->p[2]))
return 1;
if (intersect(g1->p[2], g1->p[0], g2->p[2], g2->p[0]))
return 1;
return 0;
}
/** Check to see if any triangles overlap */
int
overlap_check(
const poly_t * g,
const poly_t * const new_g
)
{
// special case -- if the root is the same as the one that we
// are checking, then it does not overlap
if (g == new_g)
return 0;
while (g)
{
if (overlap_poly(g, new_g))
return 1;
g = g->work_next;
}
return 0;
}
2014-12-15 04:18:34 +01:00
/** recursively try to fix up the triangles.
*
* returns the maximum number of triangles added
*/
int
poly_build(
poly_t * const g
)
{
face_t * const f = g->face;
const int start_edge = g->start_edge;
f->used = 1;
2014-12-31 13:07:01 +01:00
// update the group's bounding box
for (int i = 0 ; i < 3 ; i++)
{
const float px = g->p[i][0];
const float py = g->p[i][1];
if (px < poly_min[0]) poly_min[0] = px;
if (px > poly_max[0]) poly_max[0] = px;
if (py < poly_min[1]) poly_min[1] = py;
if (py > poly_max[1]) poly_max[1] = py;
}
2014-12-15 04:18:34 +01:00
fprintf(stderr, "%p: adding to poly\n", f);
2014-12-12 03:24:46 +01:00
2014-12-14 19:36:42 +01:00
for(int pass = 0 ; pass < 2 ; pass++)
{
2014-12-12 03:24:46 +01:00
// for each edge, find the triangle that matches
2014-12-15 04:18:34 +01:00
for (int i = 0 ; i < 3 ; i++)
2014-12-12 03:24:46 +01:00
{
2014-12-15 04:18:34 +01:00
const int edge = (i + start_edge) % 3;
face_t * const f2 = f->next[edge];
assert(f2 != NULL);
2014-12-14 17:49:55 +01:00
if (f2->used)
2014-12-12 03:24:46 +01:00
continue;
if (pass == 0 && f->coplanar[edge] == 0)
2014-12-14 19:36:42 +01:00
continue;
2014-12-12 03:24:46 +01:00
2014-12-14 18:21:18 +01:00
// create a group that translates and rotates
// such that it lines up with this edge
float trans_x, trans_y, rotate;
2014-12-15 04:18:34 +01:00
if (i == 0)
2014-12-14 18:21:18 +01:00
{
2014-12-15 04:18:34 +01:00
trans_x = g->a;
2014-12-14 18:21:18 +01:00
trans_y = 0;
rotate = M_PI;
2014-12-14 18:21:18 +01:00
} else
2014-12-15 04:18:34 +01:00
if (i == 1)
2014-12-14 18:21:18 +01:00
{
2014-12-15 04:18:34 +01:00
trans_x = g->x2;
trans_y = g->y2;
rotate = -atan2(g->y2, g->a - g->x2);
2014-12-14 18:21:18 +01:00
} else
2014-12-15 04:18:34 +01:00
if (i == 2)
2014-12-14 18:21:18 +01:00
{
trans_x = 0;
trans_y = 0;
2014-12-15 04:18:34 +01:00
rotate = atan2(g->y2, g->x2);
2014-12-14 23:42:18 +01:00
} else {
2014-12-15 04:18:34 +01:00
errx(EXIT_FAILURE, "edge %d invalid?\n", i);
2014-12-14 18:21:18 +01:00
}
2014-12-15 04:18:34 +01:00
// position this one translated and rotated
poly_t * const g2 = calloc(1, sizeof(*g2));
g2->face = f2;
g2->start_edge = f->next_edge[edge];
poly_position(
g2,
g,
rotate,
trans_x,
trans_y
2014-12-14 18:21:18 +01:00
);
2014-12-20 22:22:55 +01:00
if (overlap_check(poly_root, g2))
{
free(g2);
continue;
}
2014-12-14 18:21:18 +01:00
2014-12-20 22:22:55 +01:00
// no overlap, add it to the current group
g->next[i] = g2;
g2->next[0] = g;
f2->used = 1;
// if g2 is a coplanar triangle, process it now rather than
// defering the work.
if (f->coplanar[edge] == 0)
enqueue(g, g2, 1);
else
enqueue(g, g2, 0);
2014-12-12 03:24:46 +01:00
}
2014-12-14 19:36:42 +01:00
}
2014-12-12 03:24:46 +01:00
return 0;
}
2014-12-15 04:18:34 +01:00
void
poly_print(
poly_t * const g
)
2014-12-14 19:36:42 +01:00
{
2014-12-15 04:18:34 +01:00
face_t * const f = g->face;
const int start_edge = g->start_edge;
2014-12-14 19:36:42 +01:00
2014-12-15 04:18:34 +01:00
g->printed = 1;
2014-12-14 19:36:42 +01:00
2014-12-15 04:18:34 +01:00
// draw this triangle;
// if the edge is an outside, which means that the group
// has no next element, draw a cut line. If there is an
// adjacent neighbor and it is not coplanar, draw a score line
printf("<g><!-- %p %d %f %f->%p %f->%p %f->%p -->\n",
f,
g->start_edge, g->rot * 180/M_PI,
f->sides[0],
f->next[0],
f->sides[1],
f->next[1],
f->sides[2],
f->next[2]
);
2014-12-15 04:18:34 +01:00
for (int i = 0 ; i < 3 ; i++)
{
const int edge = (start_edge + i) % 3;
2014-12-15 04:18:34 +01:00
poly_t * const next = g->next[i];
if (!next)
{
// draw a cut line
svg_line("#FF0000", g->p[i], g->p[(i+1) % 3]);
continue;
}
2014-12-14 19:36:42 +01:00
if (next->printed)
continue;
2014-12-15 04:18:34 +01:00
if (f->coplanar[edge] < 0)
{
// draw a mountain score line since they are not coplanar
svg_line("#00FF00", g->p[i], g->p[(i+1) % 3]);
} else
if (f->coplanar[edge] > 0)
2014-12-15 04:18:34 +01:00
{
// draw a mountain score line since they are not coplanar
svg_line("#0000FF", g->p[i], g->p[(i+1) % 3]);
} else {
// draw a shadow line since they are coplanar
2014-12-20 22:22:55 +01:00
//svg_line("#F0F0F0", g->p[i], g->p[(i+1) % 3]);
2014-12-15 04:18:34 +01:00
}
}
printf("</g>\n");
2014-12-14 19:36:42 +01:00
2014-12-15 04:18:34 +01:00
for (int i = 0 ; i < 3 ; i++)
{
poly_t * const next = g->next[i];
if (!next || next->printed)
continue;
2014-12-14 19:36:42 +01:00
2014-12-15 04:18:34 +01:00
poly_print(next);
}
2014-12-14 19:36:42 +01:00
}
2014-12-12 03:24:46 +01:00
/* Returns the 0 for coplanar, negative for mountain, positive for valley.
* (approximates the angle between two triangles that share one edge).
2014-12-31 13:08:54 +01:00
*/
2014-12-14 17:49:55 +01:00
int
coplanar_check(
const stl_face_t * const f1,
const stl_face_t * const f2
)
{
2014-12-14 19:36:42 +01:00
// find the four distinct points
v3_t x1 = f1->p[0];
v3_t x2 = f1->p[1];
v3_t x3 = f1->p[2];
v3_t x4;
for (int i = 0 ; i < 3 ; i++)
{
x4 = f2->p[i];
if (v3_eq(&x1, &x4))
continue;
if (v3_eq(&x2, &x4))
continue;
if (v3_eq(&x3, &x4))
continue;
break;
}
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
v3_t dx31 = v3_sub(x3, x1);
v3_t dx21 = v3_sub(x2, x1);
v3_t dx43 = v3_sub(x4, x3);
v3_t cross = v3_cross(dx21, dx43);
float dot = v3_dot(dx31, cross);
int check = -EPS < dot && dot < +EPS;
2014-12-31 13:08:54 +01:00
fprintf( stderr, "%p %p %s: %f\n", f1, f2, check ? "yes" : "no", dot);
return (int) dot;
2014-12-14 17:49:55 +01:00
}
2014-12-15 04:18:34 +01:00
/** Translate a list of STL triangles into a connected graph of faces.
*
* If there are any triangles that do not have three connected edges,
* the first error will be reported and NULL will be returned.
*/
face_t *
stl2faces(
const stl_face_t * const stl_faces,
const int num_triangles
)
2014-12-12 02:29:09 +01:00
{
2014-12-14 17:49:55 +01:00
face_t * const faces = calloc(num_triangles, sizeof(*faces));
// convert the stl triangles into faces
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
fprintf(stderr, "%p %f %f %f\n", f, f->sides[0], f->sides[1], f->sides[2]);
2014-12-14 17:49:55 +01:00
}
// look to see if there is a matching point
// in the faces that we've already built
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
for (int j = 0 ; j < num_triangles ; j++)
{
if (i == j)
continue;
const stl_face_t * const stl2 = &stl_faces[j];
face_t * const f2 = &faces[j];
for (int edge = 0 ; edge < 3 ; edge++)
{
if (f->next[edge])
continue;
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
{
if (f2->next[edge2])
continue;
if (!edge_eq2(stl, stl2, edge, edge2))
continue;
f->next[edge] = f2;
f->next_edge[edge] = edge2;
f2->next[edge2] = f;
f2->next_edge[edge2] = edge;
f->coplanar[edge] =
f2->coplanar[edge2] = coplanar_check(stl, stl2);
}
}
}
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
2014-12-15 04:18:34 +01:00
fprintf(stderr, "%d missing edges?\n", i);
free(faces);
return NULL;
2014-12-14 17:49:55 +01:00
}
2014-12-12 03:24:46 +01:00
2014-12-15 04:18:34 +01:00
return faces;
}
int main(void)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
2014-12-14 16:51:26 +01:00
2014-12-15 04:18:34 +01:00
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
face_t * const faces = stl2faces(stl_faces, num_triangles);
// we now have a graph that shows the connection between
// all of the faces and their sizes. start trying to build
// non-overlapping groups of them
2014-12-14 18:21:18 +01:00
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
poly_t origin = { };
2014-12-31 13:07:01 +01:00
float last_x = 0;
float last_y = 0;
srand48(getpid());
const int offset = lrand48();
2014-12-15 04:18:34 +01:00
for (int i = 0 ; i < num_triangles ; i++)
{
face_t * const f = &faces[(i+offset) % num_triangles];
2014-12-15 04:18:34 +01:00
if (f->used)
continue;
poly_t g = {
.face = f,
.start_edge = 0,
};
poly_position(&g, &origin, 0, 0, 0);
2014-12-15 04:18:34 +01:00
2014-12-20 22:22:55 +01:00
// set the root of the new group
poly_root = &g;
2014-12-31 13:07:01 +01:00
poly_min[0] = poly_min[1] = 0;
poly_max[0] = poly_max[1] = 0;
2014-12-20 22:22:55 +01:00
fprintf(stderr, "\n\n\n****** New group %p\n", poly_root);
poly_t * iter = &g;
while (iter)
{
poly_build(iter);
iter = iter->work_next;
}
2014-12-15 04:18:34 +01:00
2014-12-31 13:07:01 +01:00
// offset the poly so that it doesn't overlap the ones
// we've already generated. only shift in Y.
float off_x = last_x - poly_min[0];
float off_y = last_y - poly_min[1];
last_y = off_y + poly_max[1];
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
2014-12-15 04:18:34 +01:00
poly_print(&g);
printf("</g>\n");
}
2014-12-12 03:24:46 +01:00
2014-12-14 18:21:18 +01:00
printf("</svg>\n");
2014-12-12 02:29:09 +01:00
return 0;
}